目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进...目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进行替换。此外,用全维动态卷积替换特征融合网络中的普通卷积,同时嵌入CA(coordinate attention)注意力模块,增强模型特征融合能力。在此基础上对原算法中损失函数进行替换,采用更加优秀的损失函数SIoU(SCYLLA intersection over union),提高检测效率。实验采用CCPD(Chinese city parking dataset)数据集,筛选出部分具有挑战性的复杂场景中的车牌图片。实验结果表明:改进后的YOLOv7算法检测速度有大幅提升,帧率从原有的81.9帧/s提升至120帧/s。同时准确率(m AP)达到95.1%,提升2.9百分点,权重模型大小为36.1 MB。可以做到对复杂场景下的车牌进行实时检测,满足轻量化要求,提升了检测速度和精度。展开更多
随着竞技运动在全球范围内的蓬勃发展,对运动动作的识别精确度要求也逐渐提高。研究针对竞技运动动作识别领域,结合改进You Only Look Once version 7(YOLOv7)和注意力机制对健美操动作识别模型进行设计。过程中将两种跨阶段局部网络结...随着竞技运动在全球范围内的蓬勃发展,对运动动作的识别精确度要求也逐渐提高。研究针对竞技运动动作识别领域,结合改进You Only Look Once version 7(YOLOv7)和注意力机制对健美操动作识别模型进行设计。过程中将两种跨阶段局部网络结构相结合,同时优化损失函数,得到改进的YOLOv7。再结合SimAM和时空注意力机制,完成识别模型的搭建。实验结果显示,改进后模型的健美操上肢动作识别准确率达到了90%,相比改进前提升了28.4%。模型的身体姿态变化识别率从64.5%升高到90%,召回率从60%升高到91.3%。结果表明,研究设计的竞技运动动作识别模型能够更好地理解和模拟竞技运动中动作的时空特性,对竞技运动相关研究以及实际应用场景中的动作识别需求具有推动作用。展开更多
文摘目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进行替换。此外,用全维动态卷积替换特征融合网络中的普通卷积,同时嵌入CA(coordinate attention)注意力模块,增强模型特征融合能力。在此基础上对原算法中损失函数进行替换,采用更加优秀的损失函数SIoU(SCYLLA intersection over union),提高检测效率。实验采用CCPD(Chinese city parking dataset)数据集,筛选出部分具有挑战性的复杂场景中的车牌图片。实验结果表明:改进后的YOLOv7算法检测速度有大幅提升,帧率从原有的81.9帧/s提升至120帧/s。同时准确率(m AP)达到95.1%,提升2.9百分点,权重模型大小为36.1 MB。可以做到对复杂场景下的车牌进行实时检测,满足轻量化要求,提升了检测速度和精度。
文摘随着竞技运动在全球范围内的蓬勃发展,对运动动作的识别精确度要求也逐渐提高。研究针对竞技运动动作识别领域,结合改进You Only Look Once version 7(YOLOv7)和注意力机制对健美操动作识别模型进行设计。过程中将两种跨阶段局部网络结构相结合,同时优化损失函数,得到改进的YOLOv7。再结合SimAM和时空注意力机制,完成识别模型的搭建。实验结果显示,改进后模型的健美操上肢动作识别准确率达到了90%,相比改进前提升了28.4%。模型的身体姿态变化识别率从64.5%升高到90%,召回率从60%升高到91.3%。结果表明,研究设计的竞技运动动作识别模型能够更好地理解和模拟竞技运动中动作的时空特性,对竞技运动相关研究以及实际应用场景中的动作识别需求具有推动作用。