针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作...针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作为其基础网络,同时修改卷积核尺寸,进一步降低特征图信息的损耗,并且为增强检测模型对小尺度目标的鲁棒性,额外增加第4个尺寸为104×104像素的特征检测层;在对特征图融合操作方面,使用双线性插值法进行上采样操作代替原最近邻插值法上采样操作,解决大部分检测算法中存在的特征严重损失问题;在损失函数方面,使用广义交并比(GIoU)代替交并比(IoU)来计算边界框的损失值,同时引入Focal Loss焦点损失函数作为边界框的置信度损失函数。实验结果表明,改进算法在VisDrone2019数据集上的均值平均精度(mAP)为63.3%,较原始YOLOv3检测模型提高了13.2百分点,并且在GTX 1080 Ti设备上可实现52帧/s的检测速度,对小目标有着较好的检测性能。展开更多
肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入...肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入扩张卷积模块,并可从目标周围感知上下文信息。在特征利用部分引入坐标注意力机制,捕捉肺结节位置、方向和跨通道信息,精确定位肺结节。改进YOLOv3的损失函数,将边界框建模成高斯分布,利用Wasserstein距离来计算两个分布之间的相似度代替IoU(Intersection over Union)度量,提升模型对目标尺度的敏感性。在LUNA16数据集上的结果显示,肺结节检测的平均精度为89.96%,敏感性为95.37%,与主流目标检测算法相比,精度平均提升了11.33%,敏感性平均提升了9.03%。展开更多
为使苹果采摘机器人在复杂果树背景下能快速准确地检测出苹果,提出一种轻量化YOLO(You only look once)卷积神经网络(Light-YOLOv3)模型与苹果检测方法。首先,对传统YOLOv3深度卷积神经网络架构进行改进,设计一种同构残差块串联的特征...为使苹果采摘机器人在复杂果树背景下能快速准确地检测出苹果,提出一种轻量化YOLO(You only look once)卷积神经网络(Light-YOLOv3)模型与苹果检测方法。首先,对传统YOLOv3深度卷积神经网络架构进行改进,设计一种同构残差块串联的特征提取网络结构,简化目标检测的特征图尺度,采用深度可分离卷积替换普通卷积,提出一种融合均方误差损失和交叉熵损失的多目标损失函数;其次,开发爬虫程序,从互联网上获取训练数据并进行标注,采用数据增强技术对训练数据进行扩充,并对数据进行归一化,针对Light-YOLOv3网络训练,提出一种基于随机梯度下降(Stochastic gradient descent,SGD)和自适应矩估计(Adaptive moment estimation,Adam)的多阶段学习优化技术;最后,分别在计算机工作站和嵌入式开发板上进行了复杂果树背景下的苹果检测实验。结果表明,基于轻量化YOLOv3网络的苹果检测方法在检测速度和准确率方面均有显著的提高,在工作站和嵌入式开发板上的检测速度分别为116.96、7.59 f/s,F1值为94.57%,平均精度均值(Mean average precision,mAP)为94.69%。展开更多
近年来,因工人未佩戴安全帽而造成的施工事故频繁发生,为降低事故发生率,对工人安全帽佩戴情况进行图像描述的研究。当前基于神经网络的图像描述方法缺乏可解释性且细节描述不充分,施工场景图像描述的研究较为匮乏,针对该问题,提出采用Y...近年来,因工人未佩戴安全帽而造成的施工事故频繁发生,为降低事故发生率,对工人安全帽佩戴情况进行图像描述的研究。当前基于神经网络的图像描述方法缺乏可解释性且细节描述不充分,施工场景图像描述的研究较为匮乏,针对该问题,提出采用YOLOv3(You Only Look Once)的检测算法,以及基于语义规则和语句模板相结合的方法递进式地生成安全帽佩戴的描述语句。首先,采集数据,制作安全帽佩戴检测数据集和图像字幕数据集;其次,使用K-means算法确定适用于该数据集的锚框参数值,用以YOLOv3网络的训练与检测;再次,预定义一个语义规则,结合目标检测结果来提取视觉概念;最后,将提取出的视觉概念填充进由图像字幕标注生成的语句模板,以生成关于施工场景中工人安全帽佩戴的图像描述语句。使用Ubuntu16.04系统和Keras深度学习框架搭建实验环境,在自制的安全帽佩戴数据集上进行不同算法的对比实验。实验结果表明,所提方法不仅能够有效界定安全帽佩戴者和未佩戴者的数量,而且在BLEU-1和CIDEr评价指标上的得分分别达到了0.722和0.957,相比其他方法分别提高了6.9%和14.8%,证明了该方法的有效性和优越性。展开更多
随着智能电网的不断发展,基于数字图像处理方法的电能表自动抄表系统被广泛应用,为提升传统电能表示数自动识别的准确率,提出了一种基于YOLOv3 (You Only Look Once)网络的电能表示数识别新方法.对于电能表图像,构建基于YOLOv3-Tiny网...随着智能电网的不断发展,基于数字图像处理方法的电能表自动抄表系统被广泛应用,为提升传统电能表示数自动识别的准确率,提出了一种基于YOLOv3 (You Only Look Once)网络的电能表示数识别新方法.对于电能表图像,构建基于YOLOv3-Tiny网络的计数器定位模型并训练,使用训练完毕的模型定位计数器目标区域,裁剪计数器区域生成计数器图像;对于计数器图像,构建基于YOLOv3网络的计数器识别模型并训练,使用训练完毕的模型识别计数器目标区域的数字.选择巴西巴拉那联邦大学公开的电能表数据集作为研究对象,通过与YOLOv2-Tiny定位模型、CR-NET识别模型的对比实验,表明了本方法具有更高的定位准确率和识别准确率.展开更多
文摘针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作为其基础网络,同时修改卷积核尺寸,进一步降低特征图信息的损耗,并且为增强检测模型对小尺度目标的鲁棒性,额外增加第4个尺寸为104×104像素的特征检测层;在对特征图融合操作方面,使用双线性插值法进行上采样操作代替原最近邻插值法上采样操作,解决大部分检测算法中存在的特征严重损失问题;在损失函数方面,使用广义交并比(GIoU)代替交并比(IoU)来计算边界框的损失值,同时引入Focal Loss焦点损失函数作为边界框的置信度损失函数。实验结果表明,改进算法在VisDrone2019数据集上的均值平均精度(mAP)为63.3%,较原始YOLOv3检测模型提高了13.2百分点,并且在GTX 1080 Ti设备上可实现52帧/s的检测速度,对小目标有着较好的检测性能。
文摘肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入扩张卷积模块,并可从目标周围感知上下文信息。在特征利用部分引入坐标注意力机制,捕捉肺结节位置、方向和跨通道信息,精确定位肺结节。改进YOLOv3的损失函数,将边界框建模成高斯分布,利用Wasserstein距离来计算两个分布之间的相似度代替IoU(Intersection over Union)度量,提升模型对目标尺度的敏感性。在LUNA16数据集上的结果显示,肺结节检测的平均精度为89.96%,敏感性为95.37%,与主流目标检测算法相比,精度平均提升了11.33%,敏感性平均提升了9.03%。
文摘为使苹果采摘机器人在复杂果树背景下能快速准确地检测出苹果,提出一种轻量化YOLO(You only look once)卷积神经网络(Light-YOLOv3)模型与苹果检测方法。首先,对传统YOLOv3深度卷积神经网络架构进行改进,设计一种同构残差块串联的特征提取网络结构,简化目标检测的特征图尺度,采用深度可分离卷积替换普通卷积,提出一种融合均方误差损失和交叉熵损失的多目标损失函数;其次,开发爬虫程序,从互联网上获取训练数据并进行标注,采用数据增强技术对训练数据进行扩充,并对数据进行归一化,针对Light-YOLOv3网络训练,提出一种基于随机梯度下降(Stochastic gradient descent,SGD)和自适应矩估计(Adaptive moment estimation,Adam)的多阶段学习优化技术;最后,分别在计算机工作站和嵌入式开发板上进行了复杂果树背景下的苹果检测实验。结果表明,基于轻量化YOLOv3网络的苹果检测方法在检测速度和准确率方面均有显著的提高,在工作站和嵌入式开发板上的检测速度分别为116.96、7.59 f/s,F1值为94.57%,平均精度均值(Mean average precision,mAP)为94.69%。
文摘近年来,因工人未佩戴安全帽而造成的施工事故频繁发生,为降低事故发生率,对工人安全帽佩戴情况进行图像描述的研究。当前基于神经网络的图像描述方法缺乏可解释性且细节描述不充分,施工场景图像描述的研究较为匮乏,针对该问题,提出采用YOLOv3(You Only Look Once)的检测算法,以及基于语义规则和语句模板相结合的方法递进式地生成安全帽佩戴的描述语句。首先,采集数据,制作安全帽佩戴检测数据集和图像字幕数据集;其次,使用K-means算法确定适用于该数据集的锚框参数值,用以YOLOv3网络的训练与检测;再次,预定义一个语义规则,结合目标检测结果来提取视觉概念;最后,将提取出的视觉概念填充进由图像字幕标注生成的语句模板,以生成关于施工场景中工人安全帽佩戴的图像描述语句。使用Ubuntu16.04系统和Keras深度学习框架搭建实验环境,在自制的安全帽佩戴数据集上进行不同算法的对比实验。实验结果表明,所提方法不仅能够有效界定安全帽佩戴者和未佩戴者的数量,而且在BLEU-1和CIDEr评价指标上的得分分别达到了0.722和0.957,相比其他方法分别提高了6.9%和14.8%,证明了该方法的有效性和优越性。
文摘随着智能电网的不断发展,基于数字图像处理方法的电能表自动抄表系统被广泛应用,为提升传统电能表示数自动识别的准确率,提出了一种基于YOLOv3 (You Only Look Once)网络的电能表示数识别新方法.对于电能表图像,构建基于YOLOv3-Tiny网络的计数器定位模型并训练,使用训练完毕的模型定位计数器目标区域,裁剪计数器区域生成计数器图像;对于计数器图像,构建基于YOLOv3网络的计数器识别模型并训练,使用训练完毕的模型识别计数器目标区域的数字.选择巴西巴拉那联邦大学公开的电能表数据集作为研究对象,通过与YOLOv2-Tiny定位模型、CR-NET识别模型的对比实验,表明了本方法具有更高的定位准确率和识别准确率.