期刊文献+
共找到730篇文章
< 1 2 37 >
每页显示 20 50 100
基于YOLOv2-Tiny的无人机火灾检测与云台跟踪研究 被引量:14
1
作者 栗俊杰 毛鹏军 +1 位作者 淡文慧 苏坤 《消防科学与技术》 CAS 北大核心 2022年第1期108-112,共5页
针对PC(Personal Computer)在无人机火灾检测应用中的环境受限问题,提出了一种基于YOLOv2-Tiny的无人机火灾检测与云台跟踪方法。首先,在改进的YOLOv2-Tiny模型上进行预训练获得最优YOLOv2-Tiny模型,并在K210开发板上部署最优YOLOv2-Tin... 针对PC(Personal Computer)在无人机火灾检测应用中的环境受限问题,提出了一种基于YOLOv2-Tiny的无人机火灾检测与云台跟踪方法。首先,在改进的YOLOv2-Tiny模型上进行预训练获得最优YOLOv2-Tiny模型,并在K210开发板上部署最优YOLOv2-Tiny模型;其次,将检测到的火灾图像传至云端并将火灾框选中心与图像中心之间的距离参数传递给PID进程,控制云台实现实时火灾跟踪;最后,通过无人机实际飞行验证火灾检测与云台跟踪的能力。实验结果表明,相较于YOLOv2模型,YOLOv2-Tiny在测试集上具有更高的检出率,检出率达到96.66%,并且检测速度达到每秒14帧,云台跟踪中心位置像素误差(CPE)低于5,实时检测与跟踪过程中无人机姿态角保持相对稳定,该研究在火灾实时检测方面具有潜力。 展开更多
关键词 无人机 yolov2-tiny 云台跟踪 K210开发板 PID
在线阅读 下载PDF
基于改进YOLOv7-tiny的车辆目标检测算法 被引量:3
2
作者 赵海丽 许修常 潘宇航 《兵工学报》 北大核心 2025年第4期101-111,共11页
为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级... 为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。 展开更多
关键词 车辆检测 yolov7-tiny算法 深度强力残差卷积块 轻量级高效层聚合网络模块
在线阅读 下载PDF
基于改进YOLOv7-Tiny的变电设备红外图像识别 被引量:2
3
作者 邓长征 刘明泽 +2 位作者 付添 弓萌庆 骆冰洁 《红外技术》 北大核心 2025年第1期44-51,共8页
针对复杂背景下变电设备红外图像目标识别精度不高、识别速度慢的问题,本文提出一种基于改进YOLOv7-Tiny的变电设备红外图像识别算法。首先,引入轻量级瓶颈结构GhostNetV2 BottleNeck替换部分CBS模块构建轻量级高效聚合网络L-ELAN(Light... 针对复杂背景下变电设备红外图像目标识别精度不高、识别速度慢的问题,本文提出一种基于改进YOLOv7-Tiny的变电设备红外图像识别算法。首先,引入轻量级瓶颈结构GhostNetV2 BottleNeck替换部分CBS模块构建轻量级高效聚合网络L-ELAN(Lightweight-Efficient Layer Aggregation Network),同时在特征提取阶段嵌入CA(Coordinate Attention)注意力机制,在降低网络参数量的同时加强网络对目标关键特征的提取,提升检测精度;将网络坐标损失函数替换为SIoU Loss,以提升锚框定位精度和网络收敛速度;在变电设备红外数据集上进行测试,结果表明,改进后网络的精确率达到96.28%,检测速率达到26.42 frame/s,模型大小降低至7.82 M。与YOLOv7-Tiny原算法相比较,本文算法在提升识别精度的同时将检测速率提升21.69%,模型大小减少36.89%,可以满足变电站设备的精准实时识别要求,为后续的变电站设备故障诊断奠定基础。 展开更多
关键词 变电设备 红外图像识别 yolov7-tiny 注意力机制 轻量化
在线阅读 下载PDF
基于YOLOv7-Tiny的轻量化钢材表面缺陷检测方法 被引量:1
4
作者 赵曙光 易文 陆小辰 《东华大学学报(自然科学版)》 北大核心 2025年第4期194-202,共9页
为实现快速且精准的钢材表面缺陷检测,提出一种基于YOLOv7-Tiny的轻量化检测方法。为优化主干提升检测精度和速度,基于Transformer模块构建轻型TGS-SPPCFSPC结构,替代SPPCSPC。此外,引入Mish激活函数以增强模型的表征能力;引入Slim-Nec... 为实现快速且精准的钢材表面缺陷检测,提出一种基于YOLOv7-Tiny的轻量化检测方法。为优化主干提升检测精度和速度,基于Transformer模块构建轻型TGS-SPPCFSPC结构,替代SPPCSPC。此外,引入Mish激活函数以增强模型的表征能力;引入Slim-Neck作为新的颈部,在保持检测精度的同时,有效地缩减模型规模和计算量。将SPD卷积与SimAM相结合作为新头部,加强对低分辨率小目标的检测能力。在NEU-DET和GC10-DET上的试验结果表明,改进算法在表现上优于数十种先进网络。相比于原始算法,改进算法在NEU-DET上,m_(AP)提升了7%,GFLOPS减少了2.5 G(Giga),参数减少了3 M(Mega),特别是小目标检测效果显著提高。在GC10-DET上,m_(AP)提升了3%,FPS达125。两者试验结果表明,提出的方法在缺陷检测领域表现出色,而且轻量化设计使其更适用于多种场景。 展开更多
关键词 钢材表面缺陷检测 yolov7-tiny TGS-SPPCFSPC 小目标 轻量化
在线阅读 下载PDF
基于改进YOLOv7-tiny的硅钢片表面缺陷检测算法 被引量:1
5
作者 李克讷 陈福丁 +2 位作者 李永革 樊香所 陈健民 《组合机床与自动化加工技术》 北大核心 2025年第2期171-176,共6页
针对硅钢片表面缺陷检测容易出现漏检、检测区域不准确、多重检测等问题,提出一种改进YOLOv7-tiny的硅钢片表面缺陷检测算法:SMCS-YOLOv7 tiny算法。首先,基于SimAM注意力机制构建ELAN-SIM模块,增强模型对目标特征信息的提取能力;其次,... 针对硅钢片表面缺陷检测容易出现漏检、检测区域不准确、多重检测等问题,提出一种改进YOLOv7-tiny的硅钢片表面缺陷检测算法:SMCS-YOLOv7 tiny算法。首先,基于SimAM注意力机制构建ELAN-SIM模块,增强模型对目标特征信息的提取能力;其次,使用Mish激活函数代替原网络中的Leaky ReLU激活函数,提高模型的非线性特征提取能力;再次,在Neck层添加CoordConv模块,增强模型的空间感知能力;最后,采用SIoU损失函数加快模型收敛速度。实验结果表明,SMCS-YOLOv7 tiny算法在硅钢片缺陷数据集上的准确度P、召回率R、mAP@0.5分别达到88%、78.1%和85.7%,较原YOLOv7-tiny算法分别提高了2.2%、3%和2.5%。相比传统的硅钢片表面缺陷检测方法,提出的算法实现了更精准检测效果。 展开更多
关键词 缺陷检测 yolov7-tiny 注意力机制 空间感知 损失函数
在线阅读 下载PDF
基于改进YOLOv7-tiny的PCB缺陷检测算法
6
作者 侯培国 韩超明 +1 位作者 李宁 宋涛 《燕山大学学报》 北大核心 2025年第2期167-176,共10页
针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池... 针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池化操作掩盖特征图内部有效信息的问题。提出了全局局部门控感知模块,通过选择性特征融合、局部与全局信息结合的方法,降低颈部网络的参数量。基于DeepPCB数据集进行实验得出,改进后的模型较传统模型精度提升了1.5%,参数量和计算量分别下降了66%和20.6%,模型规模降低了66.3%。改进后的算法识别精度高、参数量少、计算量小,可以为PCB缺陷的快速准确识别提供良好的条件。 展开更多
关键词 PCB表面缺陷检测 yolov7-tiny 多尺度捕获模块 全局局部门控感知模块 轻量化
在线阅读 下载PDF
高性能YOLOv3-tiny嵌入式硬件加速器的混合优化设计
7
作者 谭会生 肖鑫凯 卿翔 《半导体技术》 CAS 北大核心 2025年第1期55-63,共9页
为解决在嵌入式设备中部署神经网络受算法复杂度、执行速度和硬件资源约束的问题,基于Zynq异构平台,设计了一个高性能的YOLOv3-tiny网络硬件加速器。在算法优化方面,将卷积层和批归一化层融合,使用8 bit量化算法,简化了算法流程;在加速... 为解决在嵌入式设备中部署神经网络受算法复杂度、执行速度和硬件资源约束的问题,基于Zynq异构平台,设计了一个高性能的YOLOv3-tiny网络硬件加速器。在算法优化方面,将卷积层和批归一化层融合,使用8 bit量化算法,简化了算法流程;在加速器架构设计方面,设计了可动态配置的层间流水线和高效的数据传输方案,缩短了推理时间,减小了存储资源消耗;在网络前向推理方面,针对卷积计算,基于循环展开策略,设计了8通道并行流水的卷积模块;针对池化计算,采用分步计算策略实现对连续数据流的高效处理;针对上采样计算,提出了基于数据复制的2倍上采样方法。实验结果表明,前向推理时间为232 ms,功耗仅为2.29 W,系统工作频率为200 MHz,达到了23.97 GOPS的实际算力。 展开更多
关键词 yolov3-tiny网络 异构平台 硬件加速器 动态配置架构 硬件混合优化 数据复制上采样
原文传递
基于改进YOLOv7-tiny的轻量级条码检测算法
8
作者 王正家 丁聪 +3 位作者 庄健 肖喆 程培 杨剑东 《印刷与数字媒体技术研究》 北大核心 2025年第1期71-81,共11页
针对当前复杂工业场景下条码检测精度低、多尺度识别难度大、检测算法复杂度高的问题,本研究提出一种基于改进YOLOv7-tiny的轻量级条码检测算法。首先,针对检测算法复杂度高、难部署到嵌入式设备的问题,引入ShuffleNet v2轻量化网络并... 针对当前复杂工业场景下条码检测精度低、多尺度识别难度大、检测算法复杂度高的问题,本研究提出一种基于改进YOLOv7-tiny的轻量级条码检测算法。首先,针对检测算法复杂度高、难部署到嵌入式设备的问题,引入ShuffleNet v2轻量化网络并将其结构中步长为2的深度可分离卷积修改为空洞卷积来扩大感受野,修改后作为新的特征提取网络。其次,嵌入CBAM(Convolutional Block Attention Module)轻量级注意力机制提高网络特征提取能力,获取更丰富的语义信息,提升小目标检测精度。最后,采用SIoU损失函数替代原始的CIoU损失函数,增强条码定位能力。实验结果表明,改进后的YOLOv7-tiny模型相比原模型的平均精度和速度分别提升了2.36%和19frame/s、参数量和计算量分别减少了0.9MB和1.9G,满足工业场景下条码检测准确度与速度的要求。 展开更多
关键词 条码 深度学习 目标检测 轻量级 yolov7-tiny
在线阅读 下载PDF
基于改进YOLOv7-tiny的带钢表面缺陷检测算法 被引量:6
9
作者 阳丽莎 李茂军 +1 位作者 胡建文 王鼎湘 《计算机工程》 北大核心 2025年第1期208-215,共8页
针对带钢表面缺陷检测任务存在的小目标检测效率低、缺陷定位不准确、检测算法参数量大、难以部署在终端设备上等问题,提出一种改进的YOLOv7-tiny检测算法。首先,使用GSConv替换颈部网络中的标准卷积,基于GSConv设计一种改进的高效聚合... 针对带钢表面缺陷检测任务存在的小目标检测效率低、缺陷定位不准确、检测算法参数量大、难以部署在终端设备上等问题,提出一种改进的YOLOv7-tiny检测算法。首先,使用GSConv替换颈部网络中的标准卷积,基于GSConv设计一种改进的高效聚合网络(ELAN-G),保证带钢表面缺陷特征信息被充分融合同时降低算法的参数量;其次,在预测头和颈部网络之间增加针对低分辨率和小缺陷的SPDConv模块,模块生成一个中间特征图,通过对中间特征图中的小缺陷特征信息进行过滤学习得到最终特征图,以此提高预测头对小缺陷的检测精度;最后,引入MPDIoU损失函数,合理利用边界回归框的几何性质,简化损失函数计算过程并提高缺陷定位精度。实验结果表明,在NEU-DET数据集上,改进算法比其他6种先进目标检测算法效果更好,性能更均衡,其平均精度均值(mAP)可达74.1%,且参数量和计算量低于所有对比算法,可应用于工业环境中的带钢表面缺陷检测系统。 展开更多
关键词 yolov7-tiny 目标检测 表面缺陷 GSConv MPDIoU
在线阅读 下载PDF
基于YOLOv5和改进Seq2Seq的变电站码表识别
10
作者 汤震宇 杨特蕾 代小翔 《电脑与信息技术》 2025年第5期33-38,共6页
自动抄表(Automatic Meter Reading,AMR)在变电站电表读数中具有重要的应用价值。近年来,深度学习图像识别技术在AMR领域取得了显著进展。然而,现有方法大多依赖于计数器检测、分割和识别的3阶段流程,存在复杂性和效率方面的问题。为提... 自动抄表(Automatic Meter Reading,AMR)在变电站电表读数中具有重要的应用价值。近年来,深度学习图像识别技术在AMR领域取得了显著进展。然而,现有方法大多依赖于计数器检测、分割和识别的3阶段流程,存在复杂性和效率方面的问题。为提升AMR的准确性与效率,首次将序列到序列(Sequence-to-Sequence,Seq2Seq)架构引入该任务,结合YOLOv5进行计数器检测,并利用Seq2Seq架构直接识别计数器,省略了传统流程中的计数器分割步骤。此外,还提出改进注意力机制的Seq2Seq架构,以优化信息传递与特征对齐。在UFPR-AMR公开数据集上的实验表明,改进方法的准确率达到了92.5%,比原方法提升了1.25%,这一结果验证了所提出的方法在AMR任务中的有效性。 展开更多
关键词 自动抄表 yolov5 Seq2Seq 图像识别 深度学习
在线阅读 下载PDF
基于Yolov4-tiny算法的AI教学系统人体跟踪识别研究
11
作者 吴燕华 霍莉 《自动化与仪器仪表》 2025年第6期235-240,共6页
提出一种基于改进You Only Look Once version 4-tiny(YOLOv4-tiny)算法的人工智能教学系统人体跟踪识别方法,以解决现有技术在实际教学场景中识别精度不高、实时性差和环境适应性弱的问题。通过引入卷积块注意力模块、联合损失函数以... 提出一种基于改进You Only Look Once version 4-tiny(YOLOv4-tiny)算法的人工智能教学系统人体跟踪识别方法,以解决现有技术在实际教学场景中识别精度不高、实时性差和环境适应性弱的问题。通过引入卷积块注意力模块、联合损失函数以及特征金字塔网络结构,对YOLOv4-tiny算法进行改进。利用Kinect传感器收集信息,结合改进的YOLOv4-tiny算法进行用户命令的识别与分析。改进后的识别方法在两种数据集中的精确率分别为92.53%和96.23%。对10个教学动作的识别准确率分别平均提高了2.79%、4.31%。结果表明,将改进的算法与教学系统集成,能够提高算法对人体手部动作的跟踪识别效率,为教学方式的优化提供新途径,提高教学效率和智能化发展,具有重要的实际应用价值和理论意义。 展开更多
关键词 yolov4-tiny 人工智能 教学系统 动作跟踪识别 CBAM 教学方式优化
原文传递
基于YOLOv7-tiny改进的铁轨表面损伤检测算法
12
作者 贾世杰 殷永浩 +1 位作者 田丹云 李靖龙 《大连交通大学学报》 2025年第3期107-113,共7页
在轨道交通产业蓬勃发展的背景下,铁轨表面损伤的实时检测对保障列车行驶安全具有重要意义。然而,以往基于人工的检测方法效率低且可靠性不足,为此以实时性更强、检测精度更高的YOLOv7-tiny为原始网络模型进行优化,结合自建铁轨表面损... 在轨道交通产业蓬勃发展的背景下,铁轨表面损伤的实时检测对保障列车行驶安全具有重要意义。然而,以往基于人工的检测方法效率低且可靠性不足,为此以实时性更强、检测精度更高的YOLOv7-tiny为原始网络模型进行优化,结合自建铁轨表面损伤数据集进行训练和测试,提出一种改进的铁轨表面损伤检测算法。该算法对原始网络的改进主要包括:引入SiLU激活函数,提高网络的特征提取能力;在特征提取网络中加入轻量级注意力机制模块(CBAM)。这些优化在不改变模型大小、不影响实时性的前提下提高了算法检测精度。对照试验表明,改进算法对于不同类别目标的检测精度均较原算法模型YOLOv7-tiny提升4百分点以上;综合性能mAP值达到76.9%,较原模型提升3.9百分点。因此,优化产生的铁轨表面损伤检测模型明显优于YOLOv7-tiny,对轨道交通安全维护具有更高的实用价值。 展开更多
关键词 yolov7-tiny 自建铁轨表面损伤数据集 SiLU激活函数 轻量级注意力机制模块
在线阅读 下载PDF
基于改进YOLOv7-tiny的轻量化道路目标检测算法 被引量:3
13
作者 何泽江 蒋淑霞 柳霞 《汽车技术》 北大核心 2025年第2期9-16,共8页
针对目标检测算法对算力和存储空间的高要求限制其在边缘设备中检测功能实时性的问题,提出了一种基于YOLOv7-tiny改进的轻量化道路目标检测算法。首先,通过K-means++聚类算法生成适合道路目标检测的先验锚框;其次,改进ELAN结构轻量化主... 针对目标检测算法对算力和存储空间的高要求限制其在边缘设备中检测功能实时性的问题,提出了一种基于YOLOv7-tiny改进的轻量化道路目标检测算法。首先,通过K-means++聚类算法生成适合道路目标检测的先验锚框;其次,改进ELAN结构轻量化主干网络,同时提出轻量型多尺度特征(LMS)模块优化颈部网络;最后,使用西格玛线性单元(SiLU)激活函数加速模型收敛,采用MPDIoU损失函数进一步提高检测精度。试验结果表明:改进后的模型参数量减少18.3%,计算量降低15.0%,且所有类别平均检测精度上升1.1%。在Jetson TX2中,使用TensorRT加速后的检测速度达到48帧/s,基本满足道路目标检测的实时性要求。 展开更多
关键词 自动驾驶 yolov7-tiny 道路目标检测 轻量化 Jetson TX2
在线阅读 下载PDF
改进YOLOv7-Tiny的道路裂缝检测算法 被引量:3
14
作者 王启涵 刘超 《计算机工程与应用》 北大核心 2025年第10期372-380,共9页
道路裂缝检测是道路工程中的重要环节。针对现阶段道路裂缝检测算法中准确度低、效率低的问题,提出了一种基于YOLOv7-Tiny的轻量型道路裂缝检测算法YOLOv7-TPSF。引入部分卷积PConv,对原网络中耗参量较多的3×3卷积层进行部分替换,... 道路裂缝检测是道路工程中的重要环节。针对现阶段道路裂缝检测算法中准确度低、效率低的问题,提出了一种基于YOLOv7-Tiny的轻量型道路裂缝检测算法YOLOv7-TPSF。引入部分卷积PConv,对原网络中耗参量较多的3×3卷积层进行部分替换,降低模型的参数量,提升模型的训练速度;结合特征融合网络BiFusion Neck与加权特征金字塔BiFPN的优点,提出了新的特征融合模块Bi-FusFPN,减少网络计算量,强化多尺度特征的融合能力;在输出端添加无参注意力机制SimAM,进一步提高大、中、小三类目标的检测能力。实验结果表明,YOLOv7-TPSF算法相较于YOLOv7-Tiny算法,网络参数量与计算量分别减少了31.7%、34.6%,准确度与检测速度分别提高了3.7%、9.7%,一定程度上满足了道路裂缝检测准确性与实时性的需求。 展开更多
关键词 道路裂缝检测 yolov7-tiny 轻量型 注意力机制 特征融合模块Bi-FusFPN
在线阅读 下载PDF
基于改进YOLOv7-tiny的铝型材表面缺陷检测方法 被引量:3
15
作者 王浚银 文斌 +2 位作者 沈艳军 张俊 王子豪 《浙江大学学报(工学版)》 北大核心 2025年第3期523-534,共12页
针对铝型材表面缺陷具有种类多样、缺陷尺度差异大和小目标缺陷漏检的问题,提出改进的YOLOv7-tiny检测算法.利用残差结构、无参注意力机制(SimAM)、激活函数(FReLU)和裁剪卷积等重构空间金字塔池化模块,捕捉更多的细节信息,加强网络多... 针对铝型材表面缺陷具有种类多样、缺陷尺度差异大和小目标缺陷漏检的问题,提出改进的YOLOv7-tiny检测算法.利用残差结构、无参注意力机制(SimAM)、激活函数(FReLU)和裁剪卷积等重构空间金字塔池化模块,捕捉更多的细节信息,加强网络多尺度学习能力.优化检测层获取更多小目标特征和位置信息,提高网络多尺度缺陷检测能力.引入部分卷积替换高效层聚合网络(ELAN)中的3×3卷积建立轻量化模型,减少计算和训练负担.结合归一化Wasserstein距离(NWD)损失度量相似度,加速网络收敛并提升小目标缺陷检测能力.在天池铝型材数据集上进行测试,结果表明,改进YOLOv7-tiny算法在置信度阈值为0.25时,精确度达到95.0%,召回率达到91.8%,均值平均精度mAP@0.5达到94.5%,检测速度为45帧/s.相较于原算法,改进算法的mAP@0.5提高4.2个百分点,在脏点缺陷上的平均精度AP提高13.1个百分点;改进算法对于低分辨率图像和被干扰图像有更好的检测结果,表明其具备更好的泛化性和抗干扰能力. 展开更多
关键词 铝型材 表面缺陷 小目标检测 SPPCSPC重构 残差结构 yolov7-tiny 归一化Wasserstein距离(NWD)损失
在线阅读 下载PDF
基于改进YOLOv7-tiny的PCB表面缺陷检测 被引量:4
16
作者 解琳 韩跃平 +1 位作者 翟倩 李瑞红 《测试技术学报》 2025年第1期81-87,共7页
实现实时印刷电路板(Printed Circuit Board, PCB)表面缺陷检测是提高PCB制作工艺流程智能化的基础,针对原始PCB检测方法耗时长、精度低、不易移动的问题,提出了一种基于YOLOv7-tiny的改进模型。将YOLOv7-tiny中的SiLU激活函数替换为EL... 实现实时印刷电路板(Printed Circuit Board, PCB)表面缺陷检测是提高PCB制作工艺流程智能化的基础,针对原始PCB检测方法耗时长、精度低、不易移动的问题,提出了一种基于YOLOv7-tiny的改进模型。将YOLOv7-tiny中的SiLU激活函数替换为ELU函数,引入集中综合卷积模块(C3模块),将深度可分离卷积与C3相结合,构成集中综合深度可分离模块,并添加卷积块注意模块。经实验,改进后的模型在检测准确性、召回率以及均值平均精度上都表现出色,相较于原模型大小下降了2.8 MB。与其他主流的目标检测方案对比,也表现出较好的检测效果。改进后的YOLOv7-tiny能够保持更高的准确性,同时还减少了模型的内存需求,这为PCB缺陷的实时检测以及边缘部署提供了新的可能性。 展开更多
关键词 目标检测 yolov7-tiny 激活函数 集中综合深度可分离模块 注意力机制
在线阅读 下载PDF
应用MCCW-YOLOv7-tiny研究轻量级玉米田间杂草识别算法 被引量:1
17
作者 王希如 贾仁山 +4 位作者 曹玉莹 刘银川 高新悦 吴佳鑫 贾银江 《东北农业大学学报》 北大核心 2025年第1期124-138,共15页
针对玉米田间杂草传统目标检测模型存在体积大、实时性差、精准度低、移动端部署难等问题,提出了改进的轻量级目标检测算法MCCW-YOLOv7-tiny。通过将YOLOv7-tiny主干网络CSPDarknet替换为MobileNet V3模块,降低模型冗余和参数量,满足实... 针对玉米田间杂草传统目标检测模型存在体积大、实时性差、精准度低、移动端部署难等问题,提出了改进的轻量级目标检测算法MCCW-YOLOv7-tiny。通过将YOLOv7-tiny主干网络CSPDarknet替换为MobileNet V3模块,降低模型冗余和参数量,满足实时性要求。添加并行网络至主干网络,并在检测头部引入CBAM注意力机制,增强对小目标的关注,提高整体识别精度。损失函数改进为WIoUv3,以动态平衡样本质量,提升模型泛化能力。结果表明:MCCW-YOLOv7-tiny较YOLOv7-tiny,mAP从93.7%提升至95.3%,计算复杂度从13.3 GFLOPs降至6.2 GFLOPs,模型参数量为3.71 M,为复杂环境下的玉米田间杂草检测提供有效技术支持。 展开更多
关键词 yolov7-tiny MobileNet V3 CBAM注意力机制 WIoUv3 玉米 杂草识别
在线阅读 下载PDF
面向边缘设备的改进YOLOv7-tiny线虫检测模型
18
作者 李耀东 侯文进 +5 位作者 侯华鑫 王秀丽 王东 曲建平 周波 刘璋 《山东农业科学》 北大核心 2025年第10期149-157,共9页
线虫是一种广泛用于生物学研究的模式生物,本研究针对在线虫活性筛选阶段存在个体目标小、易被遮挡以及现有线虫检测模型轻量化性能差、不易在边缘设备部署等问题,提出了一种面向边缘设备的改进YOLOv7-tiny线虫检测模型。采用MobileOne... 线虫是一种广泛用于生物学研究的模式生物,本研究针对在线虫活性筛选阶段存在个体目标小、易被遮挡以及现有线虫检测模型轻量化性能差、不易在边缘设备部署等问题,提出了一种面向边缘设备的改进YOLOv7-tiny线虫检测模型。采用MobileOne网络作为骨干网络,提高模型计算效率;引入广义特征金字塔网络(GFPN)改进Neck层,实现“跳层”与“跨尺度”的自适应融合,从而提供更丰富的图像特征信息;在Neck层引入双层路由注意力机制(BRA),加强对遮挡目标的特征提取能力;在Head层增加第四检测头,提高对小目标的检测能力;利用感知量化方法对模型进行INT8量化处理,并对激活值部分采用非对称量化策略,以降低计算量并实现模型轻量化。将改进后的模型部署在边缘设备Jetson Nano上进行测试,结果表明,改进模型与原模型相比平均精度均值(mAP@0.5)提高了2.7个百分点,计算量(GFLOPs)压缩了67.71%,检测帧率(FPS)提高了23.01%。可见,改进后的模型精度有明显提升,可在边缘设备上实现快速、精准检测线虫目标。 展开更多
关键词 边缘设备 线虫检测 yolov7-tiny 轻量化
在线阅读 下载PDF
基于FPGA的YOLOv4-tiny硬件优化与实现
19
作者 王凯 柏艳红 +1 位作者 李小松 李浩然 《组合机床与自动化加工技术》 北大核心 2025年第9期24-27,33,共5页
针对YOLOv4-tiny算法结构复杂、计算资源消耗大、参数众多,难以在FPGA上高效部署的问题,提出了一种软硬件结合的优化策略。将YOLOv4-tiny的骨干网络替换为Mobilenetv1网络,在加强特征提取网络中引入CBAM模块;对网络结构进行通道剪枝,对... 针对YOLOv4-tiny算法结构复杂、计算资源消耗大、参数众多,难以在FPGA上高效部署的问题,提出了一种软硬件结合的优化策略。将YOLOv4-tiny的骨干网络替换为Mobilenetv1网络,在加强特征提取网络中引入CBAM模块;对网络结构进行通道剪枝,对权重和偏置进行16位定点数量化。改进后的网络与原始YOLOv4-tiny相比参数量减少了40%,而识别准确率基本不变。使用高层次综合工具生成FPGA IP核,设计并行流水化的卷积结构并采用卷积层间分块操作,提高计算效率。将改进后算法在Zynq-7020FPGA芯片上实现,实验结果表明,改进后算法计算性能为43.4 GOP/s,是现有文献的1.6~4.1倍;能效比是现有的工作的4.8~10.7倍。所提策略能更高效地将算法部署在资源受限的FPGA平台上。 展开更多
关键词 yolov4-tiny 算法剪枝 算法量化 FPGA 并行流水结构
在线阅读 下载PDF
长短程依赖特征金字塔的YOLOv7-tiny改进
20
作者 孙中彬 胡帅 +1 位作者 张帆 周勇 《中国图象图形学报》 北大核心 2025年第8期2775-2789,共15页
目的YOLOv7-tiny(you only look once version 7-tiny)成为实时目标检测领域的常用方法,由于其轻量化网络架构设计和较少的参数量,整个训练过程在单个网络中进行,检测速度快且不需要使用滑动窗口或候选区域,在资源受限、实时性要求高的... 目的YOLOv7-tiny(you only look once version 7-tiny)成为实时目标检测领域的常用方法,由于其轻量化网络架构设计和较少的参数量,整个训练过程在单个网络中进行,检测速度快且不需要使用滑动窗口或候选区域,在资源受限、实时性要求高的任务中表现优异。然而,YOLOv7-tiny在特征融合阶段存在相邻层特征融合时信息丢失和非相邻层特征信息差异两个问题。为了解决上述问题,提出一种长短程依赖特征金字塔网络LSRD-FPN(long short range dependency feature pyramid network),并基于该网络对YOLOv7-tiny方法进行改进。方法LSRD-FPN包括两个关键组成部分:局部短程依赖机制SRD(short range dependency)和全局长程依赖机制LRD(long range dependency)。局部短程依赖机制通过改进上采样方式和引入注意力机制,有效缓解了特征融合过程中信息丢失的问题;全局长程依赖机制通过引入跨层连接模块,将主干网络的多尺度特征缩放、融合并分配到检测阶段的不同层级特征。LSRD-FPN不仅增强了模型的特征表达能力,而且提升了其在多尺度目标检测任务的性能表现。结果选用两个不同场景和规模的数据集进行实验。实验结果表明,相较于YOLOv7-tiny,本文方法的mAP分别取得1.3%和0.5%的性能提升。与参数量相当的YOLOv5-s和YOLOv8-n相比,mAP指标在TDD(traffic detection dataset)数据集上分别提升2.6%和0.2%,在Cmudsodd(coal mine underground drilling site object detection dataset)数据集上分别提升2.1%和4.4%。结论本文提出的长短程依赖特征金字塔网络解决了YOLOv7-tiny在特征融合阶段存在的相邻层特征融合时信息丢失问题和非相邻层特征信息差异问题,提升了YOLOv7-tiny方法的检测性能,并优于两种参数量相当的方法YOLOv5-s和YOLOv8-n。 展开更多
关键词 目标检测 特征融合 特征金字塔 yolov7-tiny 多尺度特征
原文传递
上一页 1 2 37 下一页 到第
使用帮助 返回顶部