自动抄表(Automatic Meter Reading,AMR)在变电站电表读数中具有重要的应用价值。近年来,深度学习图像识别技术在AMR领域取得了显著进展。然而,现有方法大多依赖于计数器检测、分割和识别的3阶段流程,存在复杂性和效率方面的问题。为提...自动抄表(Automatic Meter Reading,AMR)在变电站电表读数中具有重要的应用价值。近年来,深度学习图像识别技术在AMR领域取得了显著进展。然而,现有方法大多依赖于计数器检测、分割和识别的3阶段流程,存在复杂性和效率方面的问题。为提升AMR的准确性与效率,首次将序列到序列(Sequence-to-Sequence,Seq2Seq)架构引入该任务,结合YOLOv5进行计数器检测,并利用Seq2Seq架构直接识别计数器,省略了传统流程中的计数器分割步骤。此外,还提出改进注意力机制的Seq2Seq架构,以优化信息传递与特征对齐。在UFPR-AMR公开数据集上的实验表明,改进方法的准确率达到了92.5%,比原方法提升了1.25%,这一结果验证了所提出的方法在AMR任务中的有效性。展开更多
提出一种基于改进You Only Look Once version 4-tiny(YOLOv4-tiny)算法的人工智能教学系统人体跟踪识别方法,以解决现有技术在实际教学场景中识别精度不高、实时性差和环境适应性弱的问题。通过引入卷积块注意力模块、联合损失函数以...提出一种基于改进You Only Look Once version 4-tiny(YOLOv4-tiny)算法的人工智能教学系统人体跟踪识别方法,以解决现有技术在实际教学场景中识别精度不高、实时性差和环境适应性弱的问题。通过引入卷积块注意力模块、联合损失函数以及特征金字塔网络结构,对YOLOv4-tiny算法进行改进。利用Kinect传感器收集信息,结合改进的YOLOv4-tiny算法进行用户命令的识别与分析。改进后的识别方法在两种数据集中的精确率分别为92.53%和96.23%。对10个教学动作的识别准确率分别平均提高了2.79%、4.31%。结果表明,将改进的算法与教学系统集成,能够提高算法对人体手部动作的跟踪识别效率,为教学方式的优化提供新途径,提高教学效率和智能化发展,具有重要的实际应用价值和理论意义。展开更多
目的YOLOv7-tiny(you only look once version 7-tiny)成为实时目标检测领域的常用方法,由于其轻量化网络架构设计和较少的参数量,整个训练过程在单个网络中进行,检测速度快且不需要使用滑动窗口或候选区域,在资源受限、实时性要求高的...目的YOLOv7-tiny(you only look once version 7-tiny)成为实时目标检测领域的常用方法,由于其轻量化网络架构设计和较少的参数量,整个训练过程在单个网络中进行,检测速度快且不需要使用滑动窗口或候选区域,在资源受限、实时性要求高的任务中表现优异。然而,YOLOv7-tiny在特征融合阶段存在相邻层特征融合时信息丢失和非相邻层特征信息差异两个问题。为了解决上述问题,提出一种长短程依赖特征金字塔网络LSRD-FPN(long short range dependency feature pyramid network),并基于该网络对YOLOv7-tiny方法进行改进。方法LSRD-FPN包括两个关键组成部分:局部短程依赖机制SRD(short range dependency)和全局长程依赖机制LRD(long range dependency)。局部短程依赖机制通过改进上采样方式和引入注意力机制,有效缓解了特征融合过程中信息丢失的问题;全局长程依赖机制通过引入跨层连接模块,将主干网络的多尺度特征缩放、融合并分配到检测阶段的不同层级特征。LSRD-FPN不仅增强了模型的特征表达能力,而且提升了其在多尺度目标检测任务的性能表现。结果选用两个不同场景和规模的数据集进行实验。实验结果表明,相较于YOLOv7-tiny,本文方法的mAP分别取得1.3%和0.5%的性能提升。与参数量相当的YOLOv5-s和YOLOv8-n相比,mAP指标在TDD(traffic detection dataset)数据集上分别提升2.6%和0.2%,在Cmudsodd(coal mine underground drilling site object detection dataset)数据集上分别提升2.1%和4.4%。结论本文提出的长短程依赖特征金字塔网络解决了YOLOv7-tiny在特征融合阶段存在的相邻层特征融合时信息丢失问题和非相邻层特征信息差异问题,提升了YOLOv7-tiny方法的检测性能,并优于两种参数量相当的方法YOLOv5-s和YOLOv8-n。展开更多
文摘自动抄表(Automatic Meter Reading,AMR)在变电站电表读数中具有重要的应用价值。近年来,深度学习图像识别技术在AMR领域取得了显著进展。然而,现有方法大多依赖于计数器检测、分割和识别的3阶段流程,存在复杂性和效率方面的问题。为提升AMR的准确性与效率,首次将序列到序列(Sequence-to-Sequence,Seq2Seq)架构引入该任务,结合YOLOv5进行计数器检测,并利用Seq2Seq架构直接识别计数器,省略了传统流程中的计数器分割步骤。此外,还提出改进注意力机制的Seq2Seq架构,以优化信息传递与特征对齐。在UFPR-AMR公开数据集上的实验表明,改进方法的准确率达到了92.5%,比原方法提升了1.25%,这一结果验证了所提出的方法在AMR任务中的有效性。
文摘提出一种基于改进You Only Look Once version 4-tiny(YOLOv4-tiny)算法的人工智能教学系统人体跟踪识别方法,以解决现有技术在实际教学场景中识别精度不高、实时性差和环境适应性弱的问题。通过引入卷积块注意力模块、联合损失函数以及特征金字塔网络结构,对YOLOv4-tiny算法进行改进。利用Kinect传感器收集信息,结合改进的YOLOv4-tiny算法进行用户命令的识别与分析。改进后的识别方法在两种数据集中的精确率分别为92.53%和96.23%。对10个教学动作的识别准确率分别平均提高了2.79%、4.31%。结果表明,将改进的算法与教学系统集成,能够提高算法对人体手部动作的跟踪识别效率,为教学方式的优化提供新途径,提高教学效率和智能化发展,具有重要的实际应用价值和理论意义。
文摘目的YOLOv7-tiny(you only look once version 7-tiny)成为实时目标检测领域的常用方法,由于其轻量化网络架构设计和较少的参数量,整个训练过程在单个网络中进行,检测速度快且不需要使用滑动窗口或候选区域,在资源受限、实时性要求高的任务中表现优异。然而,YOLOv7-tiny在特征融合阶段存在相邻层特征融合时信息丢失和非相邻层特征信息差异两个问题。为了解决上述问题,提出一种长短程依赖特征金字塔网络LSRD-FPN(long short range dependency feature pyramid network),并基于该网络对YOLOv7-tiny方法进行改进。方法LSRD-FPN包括两个关键组成部分:局部短程依赖机制SRD(short range dependency)和全局长程依赖机制LRD(long range dependency)。局部短程依赖机制通过改进上采样方式和引入注意力机制,有效缓解了特征融合过程中信息丢失的问题;全局长程依赖机制通过引入跨层连接模块,将主干网络的多尺度特征缩放、融合并分配到检测阶段的不同层级特征。LSRD-FPN不仅增强了模型的特征表达能力,而且提升了其在多尺度目标检测任务的性能表现。结果选用两个不同场景和规模的数据集进行实验。实验结果表明,相较于YOLOv7-tiny,本文方法的mAP分别取得1.3%和0.5%的性能提升。与参数量相当的YOLOv5-s和YOLOv8-n相比,mAP指标在TDD(traffic detection dataset)数据集上分别提升2.6%和0.2%,在Cmudsodd(coal mine underground drilling site object detection dataset)数据集上分别提升2.1%和4.4%。结论本文提出的长短程依赖特征金字塔网络解决了YOLOv7-tiny在特征融合阶段存在的相邻层特征融合时信息丢失问题和非相邻层特征信息差异问题,提升了YOLOv7-tiny方法的检测性能,并优于两种参数量相当的方法YOLOv5-s和YOLOv8-n。