期刊文献+
共找到917,183篇文章
< 1 2 250 >
每页显示 20 50 100
面向焊缝控制的自动焊接机窄间隙焊接轨迹YOLOX-s纵向跟踪技术
1
作者 胡石 王旭升 常宽 《河南工程学院学报(自然科学版)》 2025年第4期45-49,共5页
自动焊接机受加工工件和自身因素影响会出现不同程度的振动,使得焊枪偏离期望焊缝轨迹,出现较大焊缝。为此,提出面向焊缝控制的自动焊接机窄间隙焊接轨迹YOLOX-s纵向跟踪技术。首先,根据焊接道数、焊接次序、焊枪偏移量建立焊道轨迹坐标... 自动焊接机受加工工件和自身因素影响会出现不同程度的振动,使得焊枪偏离期望焊缝轨迹,出现较大焊缝。为此,提出面向焊缝控制的自动焊接机窄间隙焊接轨迹YOLOX-s纵向跟踪技术。首先,根据焊接道数、焊接次序、焊枪偏移量建立焊道轨迹坐标系;然后,结合YOLOX-s模型,分析窄间隙焊接轨迹在该坐标系中的位置,计算理想焊缝轨迹,将理想焊缝轨迹与窄间隙焊接轨迹的坐标位置差值作为焊缝轨迹误差;最后,利用焊缝估计调控量对该误差进行控制,结合输送速率与输送量完成窄间隙焊接轨迹纵向跟踪。结果表明:采用所提方法得到的焊缝轨迹与期望轨迹的最大跟踪误差小于5 mm,且焊缝轨迹之间的一致性系数达到8以上,可以稳定地控制自动焊接机按照期望焊缝轨迹执行任务。 展开更多
关键词 焊缝控制 自动焊接机 窄间隙焊接 yolox-s模型 纵向跟踪技术
在线阅读 下载PDF
基于改进YOLOX-S算法的雾天图像目标检测
2
作者 唐亮 《机械设计与制造工程》 2025年第5期104-108,共5页
为了改善雾天场景下目标的检测效果,为自动驾驶、智能监控等实际应用提供可靠的解决方案,提出了基于改进YOLOX-S算法的雾天图像目标检测算法。将双边滤波器引入到Retinex算法中,增强雾天图像质量;基于改进YOLOX-S构建雾天图像目标检测结... 为了改善雾天场景下目标的检测效果,为自动驾驶、智能监控等实际应用提供可靠的解决方案,提出了基于改进YOLOX-S算法的雾天图像目标检测算法。将双边滤波器引入到Retinex算法中,增强雾天图像质量;基于改进YOLOX-S构建雾天图像目标检测结构,由CSPDarknet主干网络提取多尺度特征图及其权重;在下采样阶段引入深度可分离卷积改进Neck-FPN网络,提取目标感兴趣区域特征图,实现雾天图像目标检测。实验结果表明:该算法可有效提升雾天图像质量,峰值信噪比指标达到20.828 dB,结构相似度指标为0.814;可实现目标的精准检测,平均精度(IoU=0.5)为94.5%,检测帧率为27.37帧/s。 展开更多
关键词 改进yolox-s算法 雾天图像 双边滤波器 RETINEX算法 ECANet通道注意力
在线阅读 下载PDF
基于改进YOLOx-s的无人机桥梁裂缝检测算法
3
作者 徐伟峰 吕航 +4 位作者 程子益 陆安文 王洪涛 王晏如 李昇 《吉林大学学报(理学版)》 北大核心 2025年第4期1091-1098,共8页
针对桥梁裂缝检测不充分的安全隐患问题,结合小型无人机平台提出一种基于YOLOx-s的桥梁裂缝检测算法.首先,在backbone中添加残差空洞卷积模块,以解决无人机图像尺度变化大、背景复杂的问题;其次,在PANET中添加坐标注意力机制模块,以提... 针对桥梁裂缝检测不充分的安全隐患问题,结合小型无人机平台提出一种基于YOLOx-s的桥梁裂缝检测算法.首先,在backbone中添加残差空洞卷积模块,以解决无人机图像尺度变化大、背景复杂的问题;其次,在PANET中添加坐标注意力机制模块,以提高小目标检测率;最后,替换损失函数为Focal loss,以加强正样本的学习,提高模型的稳定性.实验结果表明:该方法相比于YOLOx-s算法,检测精度提升了3.72个百分点;在嵌入式设备上,该方法比其他主流算法有更好的精度,且能实现实时性检测,可以更好地应用在无人机桥梁裂缝检测中. 展开更多
关键词 无人机 桥梁裂缝检测 目标检测 yolox-s算法 注意力机制
在线阅读 下载PDF
改进YOLOX-S的智慧港口目标检测算法
4
作者 江鉴 袁志群 +2 位作者 高秀晶 何鸿正 谷子硕 《计算机工程与设计》 北大核心 2025年第7期2045-2053,共9页
针对单目摄像头在港口场景下面临目标检测算法识别不稳定的问题,提出一种改进YOLOX-S目标检测算法。引入大核注意力机制改进主干提取网络的特征输出与BottleNeck模块,提高算法特征提取的能力;引入中心点余弦距离损失改进目标框损失函数... 针对单目摄像头在港口场景下面临目标检测算法识别不稳定的问题,提出一种改进YOLOX-S目标检测算法。引入大核注意力机制改进主干提取网络的特征输出与BottleNeck模块,提高算法特征提取的能力;引入中心点余弦距离损失改进目标框损失函数,解决训练损失虽收敛但目标框仍抖动的问题;引入深度可分离卷积模块优化检测头模块,提高检测精度同时减少模型大小;实车录制智慧港口不同场景20 906张图片进行实验,其结果表明,改进算法与YOLOX-S相比,mAP@0.5:0.95提高5.1%,模型权重大小降低8.8%,TensorRT部署检测帧率为25.0 FPS。改进方法与实验结果可为智慧港口场景下的视觉感知算法开发提供参考。 展开更多
关键词 智慧港口 自动驾驶 目标检测 yolox-s算法 大核注意力机制 ACE-IOU损失 深度可分离卷积
在线阅读 下载PDF
基于YOLOX-S算法的通信网络状态识别研究
5
作者 郑含笑 宋可可 《通信电源技术》 2025年第5期13-15,共3页
传统的通信网络状态识别方法存在数据预处理复杂、模型训练效率低下以及实时性不足等弊端,导致难以准确、高效地识别网络状态,无法满足现代复杂网络环境的需求。针对这些问题,提出了基于YOLOX-S算法的通信网络状态识别研究。利用聚类算... 传统的通信网络状态识别方法存在数据预处理复杂、模型训练效率低下以及实时性不足等弊端,导致难以准确、高效地识别网络状态,无法满足现代复杂网络环境的需求。针对这些问题,提出了基于YOLOX-S算法的通信网络状态识别研究。利用聚类算法聚类处理通信网络中的异常状态特征,形成清晰的聚类结构。使用YOLOX-S算法增强聚类后的通信网络关键特征,进一步挖掘通信网络中的潜在特征,提升特征的表达能力和区分度。最后计算通信网络增强后的特征与正常状态或预设阈值的偏离程度识别通信网络的状态。实验结果表明,该方法能够准确并及时地识别出通信网络状态,具有较高的准确率和实时性。 展开更多
关键词 yolox-s算法 通信 网络状态 识别 网络异常
在线阅读 下载PDF
基于YOLOX-S算法的电气二次设备状态自动识别研究
6
作者 柏文 《电气技术与经济》 2025年第12期86-89,共4页
电气二次设备种类繁多,且每种设备都有其特定的工作原理和性能参数,这种复杂性和多样性增加了状态识别的难度。为保证整个电力系统的安全性和稳定性,提出基于YOLOX-S算法的电气二次设备状态自动识别方法。通过分析电气二次设备的运行情... 电气二次设备种类繁多,且每种设备都有其特定的工作原理和性能参数,这种复杂性和多样性增加了状态识别的难度。为保证整个电力系统的安全性和稳定性,提出基于YOLOX-S算法的电气二次设备状态自动识别方法。通过分析电气二次设备的运行情况,构建出电气二次设备状态指标体系。基于所构建的状态指标体系,选用YOLOX-S算法建立二次设备状态隶属度模型。计算各项指标的权重,将权重计算结果与二次设备状态隶属度模型进行融合,实现电气二次设备状态的自动识别。实验结果表明,所提方法的识别准确率较高以及资源消耗较低,可以在实际中得到广泛应用。 展开更多
关键词 二次设备 电气设备 状态识别 yolox-s算法
在线阅读 下载PDF
Agri-Eval:Multi-level Large Language Model Valuation Benchmark for Agriculture
7
作者 WANG Yaojun GE Mingliang +2 位作者 XU Guowei ZHANG Qiyu BIE Yuhui 《农业机械学报》 北大核心 2026年第1期290-299,共10页
Model evaluation using benchmark datasets is an important method to measure the capability of large language models(LLMs)in specific domains,and it is mainly used to assess the knowledge and reasoning abilities of LLM... Model evaluation using benchmark datasets is an important method to measure the capability of large language models(LLMs)in specific domains,and it is mainly used to assess the knowledge and reasoning abilities of LLMs.Therefore,in order to better assess the capability of LLMs in the agricultural domain,Agri-Eval was proposed as a benchmark for assessing the knowledge and reasoning ability of LLMs in agriculture.The assessment dataset used in Agri-Eval covered seven major disciplines in the agricultural domain:crop science,horticulture,plant protection,animal husbandry,forest science,aquaculture science,and grass science,and contained a total of 2283 questions.Among domestic general-purpose LLMs,DeepSeek R1 performed best with an accuracy rate of 75.49%.In the realm of international general-purpose LLMs,Gemini 2.0 pro exp 0205 standed out as the top performer,achieving an accuracy rate of 74.28%.As an LLMs in agriculture vertical,Shennong V2.0 outperformed all the LLMs in China,and the answer accuracy rate of agricultural knowledge exceeded that of all the existing general-purpose LLMs.The launch of Agri-Eval helped the LLM developers to comprehensively evaluate the model's capability in the field of agriculture through a variety of tasks and tests to promote the development of the LLMs in the field of agriculture. 展开更多
关键词 large language models assessment systems agricultural knowledge agricultural datasets
在线阅读 下载PDF
Ecological Dynamics of a Logistic Population Model with Impulsive Age-selective Harvesting
8
作者 DAI Xiangjun JIAO Jianjun 《应用数学》 北大核心 2026年第1期72-79,共8页
In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy... In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting. 展开更多
关键词 The logistic population model Selective harvesting Asymptotic stability EXTINCTION
在线阅读 下载PDF
Modeling of Precipitation over Africa:Progress,Challenges,and Prospects
9
作者 A.A.AKINSANOLA C.N.WENHAJI +21 位作者 R.BARIMALALA P.-A.MONERIE R.D.DIXON A.T.TAMOFFO M.O.ADENIYI V.ONGOMA I.DIALLO M.GUDOSHAVA C.M.WAINWRIGHT R.JAMES K.C.SILVERIO A.FAYE S.S.NANGOMBE M.W.POKAM D.A.VONDOU N.C.G.HART I.PINTO M.KILAVI S.HAGOS E.N.RAJAGOPAL R.K.KOLLI S.JOSEPH 《Advances in Atmospheric Sciences》 2026年第1期59-86,共28页
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha... In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain. 展开更多
关键词 RAINFALL MONSOON climate modeling CORDEX CMIP6 convection-permitting models
在线阅读 下载PDF
Design optimization and FEA of B-6 and B-7 levels ballistics armor:A modelling approach
10
作者 Muhammad Naveed CHU Jinkui +1 位作者 Atif Ur Rehman Arsalan Hyder 《大连理工大学学报》 北大核心 2026年第1期66-77,共12页
Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is empl... Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor. 展开更多
关键词 radiator armor ballistics simulation Johnson-Cook model armor-piercing projectile perforated D-shaped armor plate
在线阅读 下载PDF
Lithospheric magnetic variations on the Tibetan Plateau based on a 3D surface spline model,compared with strong earthquake occurrences
11
作者 PengTao Zhang Jun Yang +3 位作者 LiLi Feng Xia Li YuHong Zhao YingFeng Ji 《Earth and Planetary Physics》 2026年第1期30-43,共14页
The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-bas... The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau. 展开更多
关键词 Tibetan Plateau magnetic variation SEISMICITY surface spline model enhanced magnetic model
在线阅读 下载PDF
Do Higher Horizontal Resolution Models Perform Better?
12
作者 Shoji KUSUNOKI 《Advances in Atmospheric Sciences》 2026年第1期259-262,共4页
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(... Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)]. 展开更多
关键词 enhancing model resolution refinement data assimilation systems section climate model climate projection higher horizontal resolution seasonal forecasting simulation seasonal migration rain bands model resolution
在线阅读 下载PDF
A Predictive Model for the Elastic Modulus of High-Strength Concrete Based on Coarse Aggregate Characteristics
13
作者 LI Liangshun LI Huajian +2 位作者 HUANG Fali YANG Zhiqiang DONG Haoliang 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期121-137,共17页
To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the stre... To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%. 展开更多
关键词 elastic modulus prediction model MINERALOGICAL influence mechanism
原文传递
Photometric modeling of ejecta for evaluating defensive Kinetic impacts on asteroids
14
作者 XiaoYu Sun ZhiJun Song +4 位作者 XiaoTao Guo XiaoJing Zhang Yuri Skorov Yang Yu He Zhang 《Earth and Planetary Physics》 2026年第1期205-221,共17页
Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evo... Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evolution,and image synthesis to compare directly with HST,LICIACube,ground-based and Lucy observations of the DART impact.Decomposing ejecta into(1)a highvelocity(~1600 m/s)plume exhibiting Na/K resonance,(2)a low-velocity(~1 m/s)conical component shaped by binary gravity and solar radiation pressure,and(3)meter-scale boulders,we quantify each component’s mass and momentum.Fitting photometric decay curves and morphological evolution yields size-velocity distributions and,via scaling laws,estimates of Dimorphos’bulk density,cratering parameters,and cohesive strength that agree with dynamical constraints.Photometric ejecta modeling therefore provides a robust route to constrain momentum enhancement and target properties,improving predictive capability for kinetic-deflection missions. 展开更多
关键词 Kinetic impact DART mission ejecta dynamics photometric modeling
在线阅读 下载PDF
An Optimized Customer Churn Prediction Approach Based on Regularized Bidirectional Long Short-Term Memory Model
15
作者 Adel Saad Assiri 《Computers, Materials & Continua》 2026年第1期1783-1803,共21页
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ... Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies. 展开更多
关键词 Customer churn prediction deep learning RBiLSTM DROPOUT baseline models
在线阅读 下载PDF
When Large Language Models and Machine Learning Meet Multi-Criteria Decision Making: Fully Integrated Approach for Social Media Moderation
16
作者 Noreen Fuentes Janeth Ugang +4 位作者 Narcisan Galamiton Suzette Bacus Samantha Shane Evangelista Fatima Maturan Lanndon Ocampo 《Computers, Materials & Continua》 2026年第1期2137-2162,共26页
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use... This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities. 展开更多
关键词 Self-moderation user-generated content k-means clustering TODIM large language models
在线阅读 下载PDF
Numerical model for rapid prediction of temperature field, mushy zone and grain size in heating−cooling combined mold (HCCM) horizontal continuous casting of C70250 alloy plates
17
作者 Ling-hui MENG Fan ZHAO +3 位作者 Dong LIU Chang-jian LU Yan-bin JIANG Xin-hua LIU 《Transactions of Nonferrous Metals Society of China》 2026年第1期203-217,共15页
Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy... Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°. 展开更多
关键词 Cu alloy numerical simulation machine learning prediction model process optimization
在线阅读 下载PDF
Optimizing a multimedia model to assess the differential roles of crops and natural vegetation in the fate of PAHs
18
作者 Chao Su Danfeng Zheng +7 位作者 Wenlei Chen Kifayatullah Khan Hong Zhang Shuai Song Ruoyu Liang Xiaoyu Zhang Yong Liu Xianghui Cao 《Journal of Environmental Sciences》 2026年第1期413-423,共11页
Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we ... Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we developed the BETR-Urban-Rural-Veg model to quantitatively evaluate the influences of both natural vegetation and crops on the multimedia transport processes of Phenanthrene(PHE)and Benzo(a)pyrene(BaP)in mainland of China.The geographic distribution of polycyclic aromatic hydrocarbon(PAH)emissions and concentrations were consistent,displaying higher levels in northern China while lower levels in southern China.Under seasonal simulations,for both natural vegetation and crops,PAH concentrations in winter and spring were 1.5 to 27-fold higher than in summer and autumn,especially for PHE.Owing to the higher leaf area index(LAI)of natural vegetation and harvesting of crops,the filter and sequestration effect of natural vegetation was stronger than crops,while the seasonal changes of PAH concentrations in crops were more significant than natural vegetation.Temperature,precipitation rates and LAI might have important influences on seasonal concentrations and overall persistence of PAHs.PHE was more sensitive to the impacts of seasonal environmental parameters.Under different landscape scenarios,average annual PAH concentrations in natural vegetation were always a little higher than those in crops,and the overall persistence of BaP was greatly affected increasing by 15.15%-16.47%.This improved model provides a useful tool for environmental management.The results of this study are expected to support land use plans and decision-making in China's mainland. 展开更多
关键词 Multimedia fate model Natural vegetation CROPS Seasonal variabilities Landscape scenarios
原文传递
An effective deep-learning prediction of Arctic sea-ice concentration based on the U-Net model
19
作者 Yifan Xie Ke Fan +2 位作者 Hongqing Yang Yi Fan Shengping He 《Atmospheric and Oceanic Science Letters》 2026年第1期34-40,共7页
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote... Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC. 展开更多
关键词 Arctic sea-ice concentration Deep-learning prediction U-Net model CFSv2 NorCPM
在线阅读 下载PDF
A decision framework for rural domestic sewage treatment models and process:Evidence from Inner Mongolia Autonomous Region,China
20
作者 Ying Yan Pengyu Li +5 位作者 Zixuan Wang Yubo Tan Tianlong Zheng Jianguo Liu Xiaoxia Yang Junxin Liu 《Journal of Environmental Sciences》 2026年第1期302-311,共10页
Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making sys... Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making. 展开更多
关键词 Rural domestic sewage Sewage treatment model DECISION-MAKING Environmental-economic benefits Inner Mongolia
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部