期刊文献+
共找到282,787篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进YOLOX-S算法的雾天图像目标检测
1
作者 唐亮 《机械设计与制造工程》 2025年第5期104-108,共5页
为了改善雾天场景下目标的检测效果,为自动驾驶、智能监控等实际应用提供可靠的解决方案,提出了基于改进YOLOX-S算法的雾天图像目标检测算法。将双边滤波器引入到Retinex算法中,增强雾天图像质量;基于改进YOLOX-S构建雾天图像目标检测结... 为了改善雾天场景下目标的检测效果,为自动驾驶、智能监控等实际应用提供可靠的解决方案,提出了基于改进YOLOX-S算法的雾天图像目标检测算法。将双边滤波器引入到Retinex算法中,增强雾天图像质量;基于改进YOLOX-S构建雾天图像目标检测结构,由CSPDarknet主干网络提取多尺度特征图及其权重;在下采样阶段引入深度可分离卷积改进Neck-FPN网络,提取目标感兴趣区域特征图,实现雾天图像目标检测。实验结果表明:该算法可有效提升雾天图像质量,峰值信噪比指标达到20.828 dB,结构相似度指标为0.814;可实现目标的精准检测,平均精度(IoU=0.5)为94.5%,检测帧率为27.37帧/s。 展开更多
关键词 改进yolox-s算法 雾天图像 双边滤波器 RETINEX算法 ECANet通道注意力
在线阅读 下载PDF
面向焊缝控制的自动焊接机窄间隙焊接轨迹YOLOX-s纵向跟踪技术
2
作者 胡石 王旭升 常宽 《河南工程学院学报(自然科学版)》 2025年第4期45-49,共5页
自动焊接机受加工工件和自身因素影响会出现不同程度的振动,使得焊枪偏离期望焊缝轨迹,出现较大焊缝。为此,提出面向焊缝控制的自动焊接机窄间隙焊接轨迹YOLOX-s纵向跟踪技术。首先,根据焊接道数、焊接次序、焊枪偏移量建立焊道轨迹坐标... 自动焊接机受加工工件和自身因素影响会出现不同程度的振动,使得焊枪偏离期望焊缝轨迹,出现较大焊缝。为此,提出面向焊缝控制的自动焊接机窄间隙焊接轨迹YOLOX-s纵向跟踪技术。首先,根据焊接道数、焊接次序、焊枪偏移量建立焊道轨迹坐标系;然后,结合YOLOX-s模型,分析窄间隙焊接轨迹在该坐标系中的位置,计算理想焊缝轨迹,将理想焊缝轨迹与窄间隙焊接轨迹的坐标位置差值作为焊缝轨迹误差;最后,利用焊缝估计调控量对该误差进行控制,结合输送速率与输送量完成窄间隙焊接轨迹纵向跟踪。结果表明:采用所提方法得到的焊缝轨迹与期望轨迹的最大跟踪误差小于5 mm,且焊缝轨迹之间的一致性系数达到8以上,可以稳定地控制自动焊接机按照期望焊缝轨迹执行任务。 展开更多
关键词 焊缝控制 自动焊接机 窄间隙焊接 yolox-s模型 纵向跟踪技术
在线阅读 下载PDF
基于改进YOLOx-s的无人机桥梁裂缝检测算法
3
作者 徐伟峰 吕航 +4 位作者 程子益 陆安文 王洪涛 王晏如 李昇 《吉林大学学报(理学版)》 北大核心 2025年第4期1091-1098,共8页
针对桥梁裂缝检测不充分的安全隐患问题,结合小型无人机平台提出一种基于YOLOx-s的桥梁裂缝检测算法.首先,在backbone中添加残差空洞卷积模块,以解决无人机图像尺度变化大、背景复杂的问题;其次,在PANET中添加坐标注意力机制模块,以提... 针对桥梁裂缝检测不充分的安全隐患问题,结合小型无人机平台提出一种基于YOLOx-s的桥梁裂缝检测算法.首先,在backbone中添加残差空洞卷积模块,以解决无人机图像尺度变化大、背景复杂的问题;其次,在PANET中添加坐标注意力机制模块,以提高小目标检测率;最后,替换损失函数为Focal loss,以加强正样本的学习,提高模型的稳定性.实验结果表明:该方法相比于YOLOx-s算法,检测精度提升了3.72个百分点;在嵌入式设备上,该方法比其他主流算法有更好的精度,且能实现实时性检测,可以更好地应用在无人机桥梁裂缝检测中. 展开更多
关键词 无人机 桥梁裂缝检测 目标检测 yolox-s算法 注意力机制
在线阅读 下载PDF
改进YOLOX-S的智慧港口目标检测算法
4
作者 江鉴 袁志群 +2 位作者 高秀晶 何鸿正 谷子硕 《计算机工程与设计》 北大核心 2025年第7期2045-2053,共9页
针对单目摄像头在港口场景下面临目标检测算法识别不稳定的问题,提出一种改进YOLOX-S目标检测算法。引入大核注意力机制改进主干提取网络的特征输出与BottleNeck模块,提高算法特征提取的能力;引入中心点余弦距离损失改进目标框损失函数... 针对单目摄像头在港口场景下面临目标检测算法识别不稳定的问题,提出一种改进YOLOX-S目标检测算法。引入大核注意力机制改进主干提取网络的特征输出与BottleNeck模块,提高算法特征提取的能力;引入中心点余弦距离损失改进目标框损失函数,解决训练损失虽收敛但目标框仍抖动的问题;引入深度可分离卷积模块优化检测头模块,提高检测精度同时减少模型大小;实车录制智慧港口不同场景20 906张图片进行实验,其结果表明,改进算法与YOLOX-S相比,mAP@0.5:0.95提高5.1%,模型权重大小降低8.8%,TensorRT部署检测帧率为25.0 FPS。改进方法与实验结果可为智慧港口场景下的视觉感知算法开发提供参考。 展开更多
关键词 智慧港口 自动驾驶 目标检测 yolox-s算法 大核注意力机制 ACE-IOU损失 深度可分离卷积
在线阅读 下载PDF
基于YOLOX-S算法的通信网络状态识别研究
5
作者 郑含笑 宋可可 《通信电源技术》 2025年第5期13-15,共3页
传统的通信网络状态识别方法存在数据预处理复杂、模型训练效率低下以及实时性不足等弊端,导致难以准确、高效地识别网络状态,无法满足现代复杂网络环境的需求。针对这些问题,提出了基于YOLOX-S算法的通信网络状态识别研究。利用聚类算... 传统的通信网络状态识别方法存在数据预处理复杂、模型训练效率低下以及实时性不足等弊端,导致难以准确、高效地识别网络状态,无法满足现代复杂网络环境的需求。针对这些问题,提出了基于YOLOX-S算法的通信网络状态识别研究。利用聚类算法聚类处理通信网络中的异常状态特征,形成清晰的聚类结构。使用YOLOX-S算法增强聚类后的通信网络关键特征,进一步挖掘通信网络中的潜在特征,提升特征的表达能力和区分度。最后计算通信网络增强后的特征与正常状态或预设阈值的偏离程度识别通信网络的状态。实验结果表明,该方法能够准确并及时地识别出通信网络状态,具有较高的准确率和实时性。 展开更多
关键词 yolox-s算法 通信 网络状态 识别 网络异常
在线阅读 下载PDF
基于YOLOX-S算法的电气二次设备状态自动识别研究
6
作者 柏文 《电气技术与经济》 2025年第12期86-89,共4页
电气二次设备种类繁多,且每种设备都有其特定的工作原理和性能参数,这种复杂性和多样性增加了状态识别的难度。为保证整个电力系统的安全性和稳定性,提出基于YOLOX-S算法的电气二次设备状态自动识别方法。通过分析电气二次设备的运行情... 电气二次设备种类繁多,且每种设备都有其特定的工作原理和性能参数,这种复杂性和多样性增加了状态识别的难度。为保证整个电力系统的安全性和稳定性,提出基于YOLOX-S算法的电气二次设备状态自动识别方法。通过分析电气二次设备的运行情况,构建出电气二次设备状态指标体系。基于所构建的状态指标体系,选用YOLOX-S算法建立二次设备状态隶属度模型。计算各项指标的权重,将权重计算结果与二次设备状态隶属度模型进行融合,实现电气二次设备状态的自动识别。实验结果表明,所提方法的识别准确率较高以及资源消耗较低,可以在实际中得到广泛应用。 展开更多
关键词 二次设备 电气设备 状态识别 yolox-s算法
在线阅读 下载PDF
基于改进YOLOX-S的安全帽反光衣检测算法 被引量:14
7
作者 程换新 蒋泽芹 +1 位作者 程力 成凯 《电子测量技术》 北大核心 2022年第6期130-135,共6页
在工业生产和交通工程中,安全帽和反光衣都是员工重要的生命安全保障。针对传统安全帽反光衣识别方法只能检测单一颜色反光衣、检测效率低的问题,提出一种基于改进YOLOX-S网络模型的安全帽反光衣检测方法。使用简化BiFPN模块替换原加强... 在工业生产和交通工程中,安全帽和反光衣都是员工重要的生命安全保障。针对传统安全帽反光衣识别方法只能检测单一颜色反光衣、检测效率低的问题,提出一种基于改进YOLOX-S网络模型的安全帽反光衣检测方法。使用简化BiFPN模块替换原加强特征提取网络,提高网络对不同尺度的特征提取能力;使用Mosaic方法进行训练,提高网络在复杂场景下的检测能力;使用GIoU损失函数,进一步提高模型的识别准确率。在扩充后的安全帽反光衣数据集上实验表明,所提算法在保持较高推理速度的情况下,mAP达83.74%,与原YOLOX-S相比,对戴安全帽、穿反光衣和行人的检测AP值有1%~3%不等的提高,对反光衣颜色无依赖性,有效实现了快速准确的安全帽反光衣检测。 展开更多
关键词 安全帽反光衣检测 yolox-s BiFPN Mosaic方法
原文传递
基于改进YOLOX-S的太阳能电池片表面缺陷检测 被引量:6
8
作者 王淑青 朱文鑫 +1 位作者 张子言 王娟 《激光杂志》 CAS 北大核心 2024年第7期118-123,共6页
针对太阳能电池片表面缺陷检测存在模型体积大和检测性能不达标的问题,提出了一种轻量化YOLOX-S检测模型用于工业生产。首先以YOLOX-S模型为基础,采用轻量级网络MobileNetV3优化主干网络,减少模型参数,降低模型运算量,提高检测速度。其... 针对太阳能电池片表面缺陷检测存在模型体积大和检测性能不达标的问题,提出了一种轻量化YOLOX-S检测模型用于工业生产。首先以YOLOX-S模型为基础,采用轻量级网络MobileNetV3优化主干网络,减少模型参数,降低模型运算量,提高检测速度。其次采用FReLU激活函数改进MobileNetV3,使模型具有空间像素级建模能力,提高模型空间特征信息灵敏度,增强模型对小目标缺陷的特征提取能力。最后,在颈部网络引入注意力特征融合模块,聚合多尺度信息,加强模型的多尺度特征融合能力。实验结果表明,改进的YOLOX-S检测模型平均精度均值可达97.6%,参数量减少43.2%,检测速度达到51帧/s,置信度均在90%以上,检测结果可靠。 展开更多
关键词 太阳能电池片 缺陷检测 yolox-s 深度学习 轻量化
原文传递
基于轻量化YOLOX-S与多阈值分割的矿山遥感图像去噪算法 被引量:4
9
作者 沈丹萍 赵爽 《金属矿山》 CAS 北大核心 2024年第9期175-180,共6页
矿山遥感图像普遍存在大量的噪点,给后续图像分析和处理带来了很大困难。提出了一种基于轻量化目标检测模型YOLOX-S和多阈值分割的矿山遥感图像去噪算法。首先使用YOLOX-S模型对矿山遥感图像进行目标检测,得到矿山目标的位置信息。然后... 矿山遥感图像普遍存在大量的噪点,给后续图像分析和处理带来了很大困难。提出了一种基于轻量化目标检测模型YOLOX-S和多阈值分割的矿山遥感图像去噪算法。首先使用YOLOX-S模型对矿山遥感图像进行目标检测,得到矿山目标的位置信息。然后针对矿山目标的特点,设计了一种多阈值分割方法消除图像中的噪声点。通过将图像分为若干个子区域,并对每个子区域采用不同的阈值进行二值化处理,最终将各子区域的二值化结果合并得到去噪后的图像。试验结果表明:该算法能够有效地去除矿山遥感图像中的噪声点,并且在保留目标特征的同时,大幅提升了图像质量。此外,由于采用了轻量化模型和多阈值分割算法,使得该算法具有较快的处理速度和较低的计算成本,适用于大规模图像数据的处理任务。 展开更多
关键词 矿山遥感图像 轻量化 yolox-s 阈值分割 图像去噪
在线阅读 下载PDF
基于改进YOLOX-S的轻量化煤矸石检测方法研究 被引量:3
10
作者 高如新 杜亚博 常嘉浩 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第4期133-140,共8页
目的 为了探索基于现有机器视觉煤矸石检测方法的模型参数量、计算量对检测速度和嵌入式设备的影响,方法 提出一种基于改进的无锚框YOLOX-S轻量化煤矸石检测模型。为使模型能提取更真实的煤矸石特征信息,收集分选现场煤矸石样本,保证实... 目的 为了探索基于现有机器视觉煤矸石检测方法的模型参数量、计算量对检测速度和嵌入式设备的影响,方法 提出一种基于改进的无锚框YOLOX-S轻量化煤矸石检测模型。为使模型能提取更真实的煤矸石特征信息,收集分选现场煤矸石样本,保证实际环境下的煤矸石检测效果,适应实际生产环境。结合CSPNet,将输入的特征图分割成两个分支,实现更丰富的梯度组合,同时减少模型计算量;之后在其中一条分支使用Ghost轻量化卷积,通过少量常规卷积生成一组特征图,达到初次减少计算量和参数量的效果,然后在此特征图基础上经过简单线性变化操作,生成一组新的特征图,将两组特征图进行融合,降低对计算资源需求的同时,也达到了常规卷积相同的特征提取效果;引入LeakyReLU激活函数减弱模型梯度消失的影响,提取更深更多的特征信息;最后融合两个分支特征,保证较高的检测精度,提升模型检测速度。采用CIOU Loss(complete IOU loss)优化目标边界框回归损失函数,使模型回归损失收敛更快,提高模型目标定位能力。结果 与原模型相比,本文改进模型在保证较高的平均精度均值90.51%情况下,模型参数减少47%,计算量减少49%,检测速度达到50帧/s。结论 轻量化煤矸石检测模型使智能化煤矸石检测在实际生产环境中具有一定的应用前景。 展开更多
关键词 煤矸石检测 yolox-s 轻量化 目标定位 检测速度
在线阅读 下载PDF
基于改进YOLOX-S的苹果成熟度检测方法 被引量:4
11
作者 黄威 刘义亭 +1 位作者 李佩娟 陈光明 《中国农机化学报》 北大核心 2024年第3期226-232,共7页
准确检测果园中未成熟与成熟的苹果对果园早期作物的负荷管理至关重要,提出一种能够实时检测苹果成熟度,并估算出整棵果树果实数量的方法。为提高YOLOX-S网络在复杂场景下的检测能力,在FPN(特征金字塔)的残差连接处增加了CoordinateAtte... 准确检测果园中未成熟与成熟的苹果对果园早期作物的负荷管理至关重要,提出一种能够实时检测苹果成熟度,并估算出整棵果树果实数量的方法。为提高YOLOX-S网络在复杂场景下的检测能力,在FPN(特征金字塔)的残差连接处增加了CoordinateAttention(位置注意力);为更好地检测图像中生长密集、存在遮挡、尺寸较小的苹果,将位置损失函数IoU_Loss更换为CIoU_Loss。试验结果表明,所提出的改进YOLOX-S检测算法相较于原算法,mAP值提高约1.97%,苹果低成熟度、中等成熟度和高等成熟度的AP值分别为90.85%、95.10%和80.50%。 展开更多
关键词 苹果 yolox-s 目标检测 位置注意力 成熟度检测
在线阅读 下载PDF
YOLOX-S声光信息融合目标识别算法 被引量:2
12
作者 杨茸宇 刘凤丽 郝永平 《探测与控制学报》 CSCD 北大核心 2024年第5期71-79,共9页
针对现代战场单一探测手段的局限性和单模态目标识别存在信息不全面、易受噪声干扰等缺点,提出一种融合声光两种模态的目标识别方法。该方法利用深度卷积残差网络对声纹信息的对数梅尔频谱系数特征进行提取,使用YOLOX-S网络对目标进行... 针对现代战场单一探测手段的局限性和单模态目标识别存在信息不全面、易受噪声干扰等缺点,提出一种融合声光两种模态的目标识别方法。该方法利用深度卷积残差网络对声纹信息的对数梅尔频谱系数特征进行提取,使用YOLOX-S网络对目标进行光学特征提取,并计算目标的像空间位置与类别信息,然后在YOLOX-S模型预测部分的解耦头中引入用于处理声音特征的支路,将目标的光学特性与声学特性在YOLOX-S检测头分类支路上进行空间归一化,使视觉数据与声纹数据在同一可拼接域上进行映射与融合,对目标的声光融合特征进行识别推理。在自建数据集上进行验证,实验结果表明声纹信息和图像信息融合可以提供更全面的感知能力,使得目标的检测和识别更加准确和可靠。 展开更多
关键词 目标识别 特征融合 yolox-s 声纹特征
在线阅读 下载PDF
改进YOLOX-s的密集垃圾检测方法 被引量:3
13
作者 谢若冰 李茂军 +1 位作者 李宜伟 胡建文 《计算机工程与应用》 CSCD 北大核心 2024年第5期250-258,共9页
针对密集堆放的多种类垃圾检测存在识别率低、定位不够准确和待测目标被误检、漏检问题,提出了一种融合多头自注意力机制改进YOLOX-s的垃圾检测方法。在特征提取网络嵌入SwinTransformer模块,引入基于滑窗操作的多头自注意力机制,使得... 针对密集堆放的多种类垃圾检测存在识别率低、定位不够准确和待测目标被误检、漏检问题,提出了一种融合多头自注意力机制改进YOLOX-s的垃圾检测方法。在特征提取网络嵌入SwinTransformer模块,引入基于滑窗操作的多头自注意力机制,使得网络兼顾全局特征信息和重点特征信息,减少误检现象;在预测输出网络中使用可变形卷积,对初始预测框进行精细化处理,提高定位精度;在EIoU损失的基础上引入加权系数,提出加权IoU-EIoU损失,自适应调整训练时不同阶段不同损失的关注程度,进一步加快训练网络的收敛速度。在公开204类垃圾检测数据集中进行测试,结果表明,所提改进算法的平均精度均值分别可达80.5%和92.5%,优于当前流行目标检测算法,且检测速度快,满足实时性需求。 展开更多
关键词 密集垃圾检测 多头自注意力机制 yolox-s 深度学习
在线阅读 下载PDF
基于改进YOLOX-s的田间麦穗检测及计数 被引量:5
14
作者 沈志豪 刘金江 张建洋 《江苏农业科学》 北大核心 2023年第12期164-171,共8页
麦穗检测与计数关乎小麦的产量预估与育种,估算小麦产量的重要指标之一就是单位面积穗数,如何准确检测单位面积穗数对于农业生产管理决策有着重要的指导作用。因此本研究提出了基于改进的YOLOX-s的田间麦穗检测方法对麦穗进行精准识别... 麦穗检测与计数关乎小麦的产量预估与育种,估算小麦产量的重要指标之一就是单位面积穗数,如何准确检测单位面积穗数对于农业生产管理决策有着重要的指导作用。因此本研究提出了基于改进的YOLOX-s的田间麦穗检测方法对麦穗进行精准识别与计数。首先,选取多个国家的不同品种小麦图像,使用图像增强、数据清洗等方法建立全球小麦图像数据集。其次,在YOLOX-s的基础上根据麦穗图像的特点,重新设计了特征提取网络的深度,同时加入注意力机制,充分提取麦穗特征。将SPP模块替换为SPPF模块,在提升推理速度的同时,不降低模型性能。通过全球小麦图像数据集进行模型训练,并使用实地拍摄的麦田图像对模型进行测试。试验结果表明:通过全球小麦图像数据集的训练,改进的YOLOX-s网络模型的mAP达到了89.03%,精确度达到了91.21%。在实拍的麦田图像中,计数准确率达到了97.93%,平均单幅图像计数为0.194 s,单株小麦识别速度为2.8 ms,检测速度较YOLOX-s提升30.2%,计数速度优异,麦穗定位准确。 展开更多
关键词 yolox-s 麦穗计数 轻量级 卷积神经网络 注意力机制 Soft NMS
在线阅读 下载PDF
基于改进YoloX-s的密贴检查器故障检测方法 被引量:8
15
作者 徐哲玮 刘昭 +1 位作者 包建东 刘英舜 《电子测量技术》 北大核心 2022年第12期91-98,共8页
为了降低密贴检查器维护和检修中的高运营成本,提高安全保障能力,提出了一种改进YoloX-s的密贴检查器故障检测方法。通过改进YoloX-s中的PANet路径融合网络,进一步增加了与浅层特征层的融合;此外,增加了CA注意力机制,将注意力集中在目... 为了降低密贴检查器维护和检修中的高运营成本,提高安全保障能力,提出了一种改进YoloX-s的密贴检查器故障检测方法。通过改进YoloX-s中的PANet路径融合网络,进一步增加了与浅层特征层的融合;此外,增加了CA注意力机制,将注意力集中在目标区域内,以获取细节信息;选用CIoU损失函数以聚焦目标框与检测框之间的重叠面积、中心点距离和长宽比,提高模型的定位精度。实验结果表明,相较于YoloX-s模型,所提模型有着更好的综合表现,动接点环平均精度为97.73%,静接点片平均精度为98.83%,平均精度均值为98.28%。 展开更多
关键词 轨道交通 密贴检查器 故障检测 yolox-s 深度学习
原文传递
基于改进YOLOX-s的轻量级型钢表面缺陷检测算法 被引量:7
16
作者 黄啸 吴龙 +1 位作者 黎尧 吕宏泽 《计算机应用》 CSCD 北大核心 2023年第S02期201-208,共8页
单阶段目标检测网络特征融合性能不足,且型钢生产现场计算资源受限,导致型钢表面缺陷检测精度较低。针对上述问题,提出一种改进YOLOX-s的轻量级型钢表面缺陷检测算法。首先,提出一种轻量级双路并行注意力模块并将该模块引入YOLOX-s,以... 单阶段目标检测网络特征融合性能不足,且型钢生产现场计算资源受限,导致型钢表面缺陷检测精度较低。针对上述问题,提出一种改进YOLOX-s的轻量级型钢表面缺陷检测算法。首先,提出一种轻量级双路并行注意力模块并将该模块引入YOLOX-s,以提高网络对缺陷特征的敏感度和提升有效特征的提取效率;其次,在Neck中构建双向特征金字塔网络(BiFPN)加权特征融合路径,促进浅层细节特征与深层语义特征的交互融合,强化网络特征融合能力,并在网络中引入深度可分离卷积(DSC)对模型进行轻量化处理;最后,将模型的边界框回归损失函数替换为完全交并比(CIoU)损失,加快模型收敛,提升预测框的定位精度。在NEU-DET数据集上的实验结果表明,所提算法的平均精度均值(mAP)达到了74.6%,比原始YOLOX-s提升了4.8个百分点,推理帧率达到75.2 frame/s,能够满足实时性检测的需求;生产现场采集的型钢数据集进一步验证了所提算法的可行性。 展开更多
关键词 yolox-s 双向特征金字塔网络 并行注意力 完全交并比 损失 深度可分离卷积 型钢表面缺陷检测
在线阅读 下载PDF
基于YOLOX-Swin的高效建筑火灾烟雾检测和疏散模拟方法 被引量:4
17
作者 徐照 戴天琦 《Journal of Southeast University(English Edition)》 EI 2023年第4期372-383,共12页
为了实现高效的建筑火灾应急救援疏散,分析了将目标检测技术应用于建筑火灾应急处置的可能性.将目标检测算法应用于火灾预警阶段,将Transformer、卷积神经网络CNN和轻量级注意力机制模块CBAM相结合,对火焰和烟雾局部和全局特征进行提取... 为了实现高效的建筑火灾应急救援疏散,分析了将目标检测技术应用于建筑火灾应急处置的可能性.将目标检测算法应用于火灾预警阶段,将Transformer、卷积神经网络CNN和轻量级注意力机制模块CBAM相结合,对火焰和烟雾局部和全局特征进行提取,提高目标检测算法的精度并实现对火灾发生位置的快速定位.提出一种用于路径搜索的改进的蚁群算法,对启发函数和信息素挥发系数进行改进.在案例中,建立栅格图模型,结合定位信息,通过仿真模拟的方式验证方法的有效性.结果表明:相比与YOLOX算法,YOLOX-Swin模型平均精度提高1.5%;改进蚁群算法降低了传统蚁群算法的搜索范围,提高模型的收敛速度,有效避免了模型陷入局部最优解的困境.将火灾预警和火灾人员疏散相结合,建立完整的建筑火灾应急处置方案. 展开更多
关键词 计算机视觉 自注意力 蚁群算法 火灾动力学模拟
在线阅读 下载PDF
改进YOLOX-S实时多尺度交通标志检测算法 被引量:2
18
作者 王能文 张涛 《计算机工程与应用》 CSCD 北大核心 2023年第21期167-175,共9页
交通标志检测对于无人驾驶系统来说是一项具有挑战性的任务。针对交通标志检测过程中,目标小、受背景环境影响等难点,提出一种基于改进YOLOX-S的算法。设计ResNet50-vd-dcn替换原YOLOX-S中的CSPDarknet53主干网络,使用ResNet-D结合可变... 交通标志检测对于无人驾驶系统来说是一项具有挑战性的任务。针对交通标志检测过程中,目标小、受背景环境影响等难点,提出一种基于改进YOLOX-S的算法。设计ResNet50-vd-dcn替换原YOLOX-S中的CSPDarknet53主干网络,使用ResNet-D结合可变性卷积,减少了模型的计算量同时也保证了网络的学习能力。提出增强特征图模块,该模块利用特征图连接流和注意力机制流来减少特征图生成过程中的信息丢失,进而提高模型的表示能力。提出一种三通道加权双向特征金字塔网络替换原有特征金字塔结构,可以有效加强特征融合,提高多尺度目标识别能力。为增加模型对正样本的学习,在后处理阶段引入Focal Loss损失函数。实验结果表明,与原YOLOX-S算法相比,在TT100K数据集上小目标精度、小目标召回率以及mAP分别提升了2.8、4.1、2.1个百分点,同时检测速度快了2.3 FPS。在CCTSDB数据上mAP提升了1.1个百分点,检测速度为120 FPS,满足实时检测的要求。 展开更多
关键词 交通标志检测 yolox-s 小目标检测 特征增强 注意力机制流
在线阅读 下载PDF
基于改进YOLOX-s的安全帽检测 被引量:4
19
作者 苏鹏 刘美 马思群 《计算机系统应用》 2023年第7期145-154,共10页
在施工现场中,发生过许多高空坠落事故,因此在施工现场佩戴安全帽是十分有必要的.针对安全帽佩戴状况检测中遇到的小目标样本缺检、漏检的情况,提出一种基于YOLOX-s的改进算法.首先,在Neck层引入主干特征提取网络中的160×160特征... 在施工现场中,发生过许多高空坠落事故,因此在施工现场佩戴安全帽是十分有必要的.针对安全帽佩戴状况检测中遇到的小目标样本缺检、漏检的情况,提出一种基于YOLOX-s的改进算法.首先,在Neck层引入主干特征提取网络中的160×160特征层进行特征融合,并且增加了一个针对小目标的检测头;其次,采用SIoU损失函数计算损失值,使得网络在训练过程中考虑的损失项更加全面;并且采用varifocal loss函数来计算置信度损失值,进一步改善训练过程中存在的正样本与困难样本不均衡的问题,最后,采用CA(coordinate attention)注意力机制来增强模型的特征表达能力.实验结果表明,通过对Neck层与检测层、损失函数的优化以及引入CA注意力机制,使得网络在训练过程中收敛与回归性能更佳.改进后的算法的mAP值为95.57%,相较于YOLOv3及原YOLOX-s算法在mAP值上分别提高了17.11%、3.59%.改进后的算法检测速度为54.73帧/s,符合实时检测速度要求. 展开更多
关键词 安全帽检测 yolox-s 小目标检测 SIoU损失函数 varifocal loss函数 注意力机制
在线阅读 下载PDF
基于改进YOLOX-s算法的航天太阳电池缺陷检测 被引量:1
20
作者 李振伟 张仕海 +2 位作者 屈重年 汝承印 陈康静 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期276-284,共9页
针对航天太阳电池表面缺陷检测问题,提出基于机器视觉与深度学习的缺陷检测方法。通过航天太阳电池缺陷检测系统获取图像,并依据企业电池片缺陷的分类标准构建航天太阳电池缺陷数据集。采用切片技术获取包含缺陷目标的子图像数据集,解... 针对航天太阳电池表面缺陷检测问题,提出基于机器视觉与深度学习的缺陷检测方法。通过航天太阳电池缺陷检测系统获取图像,并依据企业电池片缺陷的分类标准构建航天太阳电池缺陷数据集。采用切片技术获取包含缺陷目标的子图像数据集,解决卷积和下采样操作信息丢失而导致召回率低的问题。针对不同缺陷采取适当的图像增强方式进行扩充数据集,以避免训练过程中因数据集不足导致的过拟合问题。采用深度可分离卷积、优化损失函数、双线性插值上采样及引入注意力机制等方法对YOLOX-s算法进行改进,以获得综合效果最佳的航天太阳电池缺陷检测模型。通过不同数据集训练及检测精度指标对比,以及消融实验验证改进模型的有效性。通过改进模型与同类主流模型对比实验,验证改进模型在航天太阳电池缺陷检测方面的优越性。 展开更多
关键词 太阳电池 机器视觉 深度学习 yolox-s 缺陷检测
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部