针对地震后利用遥感图像检测受损建筑物,本研究提出了一种基于改进YOLOv3模型的受损建筑物识别方法。首先,通过深入分析尺度特征,对主干网络进行了针对性优化,增强了模型对微小目标特征的捕获能力。其次,引入感受野模块(Receptive Field...针对地震后利用遥感图像检测受损建筑物,本研究提出了一种基于改进YOLOv3模型的受损建筑物识别方法。首先,通过深入分析尺度特征,对主干网络进行了针对性优化,增强了模型对微小目标特征的捕获能力。其次,引入感受野模块(Receptive Field Block,RFB),拓宽了特征图的感知域,提高了对小尺寸目标的检测灵敏度。最后,对锚框及其分配策略进行了精细调整。实验结果表明,相较于原始YOLOv3模型,所提方法检测精度和检测速度均大幅提升,并且在抗噪能力上展现出显著优势;与已有识别方法相比,平均检测精度分别提升了4.8%和5.4%;在处理复杂的目标检测任务时展现出更优的性能和更强的鲁棒性,有效实现了高分辨率遥感图像中受损建筑物的准确识别。展开更多
针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作...针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作为其基础网络,同时修改卷积核尺寸,进一步降低特征图信息的损耗,并且为增强检测模型对小尺度目标的鲁棒性,额外增加第4个尺寸为104×104像素的特征检测层;在对特征图融合操作方面,使用双线性插值法进行上采样操作代替原最近邻插值法上采样操作,解决大部分检测算法中存在的特征严重损失问题;在损失函数方面,使用广义交并比(GIoU)代替交并比(IoU)来计算边界框的损失值,同时引入Focal Loss焦点损失函数作为边界框的置信度损失函数。实验结果表明,改进算法在VisDrone2019数据集上的均值平均精度(mAP)为63.3%,较原始YOLOv3检测模型提高了13.2百分点,并且在GTX 1080 Ti设备上可实现52帧/s的检测速度,对小目标有着较好的检测性能。展开更多
文摘针对地震后利用遥感图像检测受损建筑物,本研究提出了一种基于改进YOLOv3模型的受损建筑物识别方法。首先,通过深入分析尺度特征,对主干网络进行了针对性优化,增强了模型对微小目标特征的捕获能力。其次,引入感受野模块(Receptive Field Block,RFB),拓宽了特征图的感知域,提高了对小尺寸目标的检测灵敏度。最后,对锚框及其分配策略进行了精细调整。实验结果表明,相较于原始YOLOv3模型,所提方法检测精度和检测速度均大幅提升,并且在抗噪能力上展现出显著优势;与已有识别方法相比,平均检测精度分别提升了4.8%和5.4%;在处理复杂的目标检测任务时展现出更优的性能和更强的鲁棒性,有效实现了高分辨率遥感图像中受损建筑物的准确识别。
文摘针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作为其基础网络,同时修改卷积核尺寸,进一步降低特征图信息的损耗,并且为增强检测模型对小尺度目标的鲁棒性,额外增加第4个尺寸为104×104像素的特征检测层;在对特征图融合操作方面,使用双线性插值法进行上采样操作代替原最近邻插值法上采样操作,解决大部分检测算法中存在的特征严重损失问题;在损失函数方面,使用广义交并比(GIoU)代替交并比(IoU)来计算边界框的损失值,同时引入Focal Loss焦点损失函数作为边界框的置信度损失函数。实验结果表明,改进算法在VisDrone2019数据集上的均值平均精度(mAP)为63.3%,较原始YOLOv3检测模型提高了13.2百分点,并且在GTX 1080 Ti设备上可实现52帧/s的检测速度,对小目标有着较好的检测性能。