期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
SPD-YOLO:A Novel Lightweight YOLO Modelfor Road Information Detection
1
作者 Guoliang Li Xianxin Ke +1 位作者 Tao Xue Xiangyu Liao 《Journal of Beijing Institute of Technology》 2025年第5期482-495,共14页
Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes... Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes a you only look once(YOLO)algorithm for speed bump detection(SPD-YOLO),a lightweight model based on YOLO11s that integrates three core innova-tive modules to balance detection precision and computational efficiency:it replaces YOLO11s’original backbone with StarNet,which uses‘star operations’to map features into high-dimensional nonlinear spaces for enhanced feature representation while maintaining computational efficiency;its neck incorporates context feature calibration(CFC)and spatial feature calibration(SFC)to improve detection performance without significant computational overhead;and its detection head adopts a lightweight shared convolutional detection(LSCD)structure combined with GroupNorm,minimizing computational complexity while preserving multi-scale feature fusion efficacy.Experi-ments on a custom speed bump dataset show SPD-YOLO achieves a mean average precision(mAP)of 79.9%,surpassing YOLO11s by 1.3%and YOLO12s by 1.2%while reducing parameters by 26.3%and floating-point operations per second(FLOPs)by 29.5%,enabling real-time deploy-ment on resource-constrained platforms. 展开更多
关键词 LIGHTWEIGHT object detection road speed bump detection yolo11 algorithm
在线阅读 下载PDF
边缘细节增强的肺炎胸部X射线病灶定位
2
作者 臧佳明 郑力新 +1 位作者 何建海 潘书万 《华侨大学学报(自然科学版)》 2025年第5期493-504,共12页
设计一种基于YOLO11s算法改进的YOLO11s-SAD算法,用于缓解微小病灶难以检测、复杂背景下病灶定位效果差和误检、漏检等情况。首先,设计空间边缘信息融合(SEIF)模块,使用基于Sobel算子实现的边缘检测与最大池化操作并行处理输入图像,以... 设计一种基于YOLO11s算法改进的YOLO11s-SAD算法,用于缓解微小病灶难以检测、复杂背景下病灶定位效果差和误检、漏检等情况。首先,设计空间边缘信息融合(SEIF)模块,使用基于Sobel算子实现的边缘检测与最大池化操作并行处理输入图像,以提升主干对病灶边缘的特征提取能力。然后,使用ASF-Neck作为新的颈部网络,通过优化特征融合机制更好地捕捉多尺度特征之间的相互关系。最后,使用动态上采样(DySample)替换了ASF-Neck中尺度序列特征融合(SSFF)模块内的双线性插值,减少上采样过程中肺炎细节特征的丢失,并采用Adam优化器进行模型参数优化。结果表明:文中算法在不显著增加参数量和浮点运算量的情况下,平均精度均值可以达到57.9%,相较于基准算法提升3.4%,其病灶定位效果优于其他主流检测算法。 展开更多
关键词 肺炎检测 病灶定位 辅助诊断 SEIF模块 yolo11算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部