Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes...Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes a you only look once(YOLO)algorithm for speed bump detection(SPD-YOLO),a lightweight model based on YOLO11s that integrates three core innova-tive modules to balance detection precision and computational efficiency:it replaces YOLO11s’original backbone with StarNet,which uses‘star operations’to map features into high-dimensional nonlinear spaces for enhanced feature representation while maintaining computational efficiency;its neck incorporates context feature calibration(CFC)and spatial feature calibration(SFC)to improve detection performance without significant computational overhead;and its detection head adopts a lightweight shared convolutional detection(LSCD)structure combined with GroupNorm,minimizing computational complexity while preserving multi-scale feature fusion efficacy.Experi-ments on a custom speed bump dataset show SPD-YOLO achieves a mean average precision(mAP)of 79.9%,surpassing YOLO11s by 1.3%and YOLO12s by 1.2%while reducing parameters by 26.3%and floating-point operations per second(FLOPs)by 29.5%,enabling real-time deploy-ment on resource-constrained platforms.展开更多
文摘Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes a you only look once(YOLO)algorithm for speed bump detection(SPD-YOLO),a lightweight model based on YOLO11s that integrates three core innova-tive modules to balance detection precision and computational efficiency:it replaces YOLO11s’original backbone with StarNet,which uses‘star operations’to map features into high-dimensional nonlinear spaces for enhanced feature representation while maintaining computational efficiency;its neck incorporates context feature calibration(CFC)and spatial feature calibration(SFC)to improve detection performance without significant computational overhead;and its detection head adopts a lightweight shared convolutional detection(LSCD)structure combined with GroupNorm,minimizing computational complexity while preserving multi-scale feature fusion efficacy.Experi-ments on a custom speed bump dataset show SPD-YOLO achieves a mean average precision(mAP)of 79.9%,surpassing YOLO11s by 1.3%and YOLO12s by 1.2%while reducing parameters by 26.3%and floating-point operations per second(FLOPs)by 29.5%,enabling real-time deploy-ment on resource-constrained platforms.