This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,an...This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.展开更多
针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减...针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减除法实现运动物体检测,利用深度图结合深度阈值分割构建跨域掩膜分割机制,并设计相机运动几何校正策略补偿检测框坐标误差,在实现运动物体分割的同时提升处理速度.为优化特征点利用率,采用金字塔光流对动态特征点进行帧间连续跟踪与更新,同时确保仅由静态特征点参与位姿估计过程.在TUM数据集上进行系统性评估,实验结果表明,相比于ORB-SLAM3算法,该算法的绝对位姿误差平均降幅达97.1%,与使用深度学习分割网络的DynaSLAM和DS-SLAM的动态SLAM算法相比,其单帧跟踪时间大幅减少,在精度与效率之间实现了更好的平衡.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(2024300443)the Natural Science Foundation of Jiangsu Province(BK20241224).
文摘This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.
文摘针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减除法实现运动物体检测,利用深度图结合深度阈值分割构建跨域掩膜分割机制,并设计相机运动几何校正策略补偿检测框坐标误差,在实现运动物体分割的同时提升处理速度.为优化特征点利用率,采用金字塔光流对动态特征点进行帧间连续跟踪与更新,同时确保仅由静态特征点参与位姿估计过程.在TUM数据集上进行系统性评估,实验结果表明,相比于ORB-SLAM3算法,该算法的绝对位姿误差平均降幅达97.1%,与使用深度学习分割网络的DynaSLAM和DS-SLAM的动态SLAM算法相比,其单帧跟踪时间大幅减少,在精度与效率之间实现了更好的平衡.