期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Darknet框架下YOLO v2算法的车辆多目标检测方法 被引量:26
1
作者 李珣 刘瑶 +2 位作者 李鹏飞 张蕾 赵征凡 《交通运输工程学报》 EI CSCD 北大核心 2018年第6期142-158,共17页
针对道路车辆目标检测传统方法需随场景变化提取不同特征,检测率较低与鲁棒性差的问题,提出了一种基于Darknet框架下YOLO v2算法的车辆多目标检测方法;根据目标路段场景与车流量的变化对YOLO-voc网络模型进行改进,基于ImageNet数据集和... 针对道路车辆目标检测传统方法需随场景变化提取不同特征,检测率较低与鲁棒性差的问题,提出了一种基于Darknet框架下YOLO v2算法的车辆多目标检测方法;根据目标路段场景与车流量的变化对YOLO-voc网络模型进行改进,基于ImageNet数据集和微调技术获得分类训练网络模型,对训练结果和车辆目标特征进行分析后进一步调整改进的算法参数,最终获得更适合于道路车辆检测的YOLO-vocRV网络模型下车辆多目标检测方法;为验证检测方法的有效性和完备性,采用不同车流密度进行了车辆多目标检测试验,并与经典YOLO-voc、YOLO9000模型进行了对比;采用改进YOLO-vocRV网络模型,选取20 000次迭代,分析了多目标检测结果。试验结果表明:在阻塞流样本条件下,YOLO9000网络模型检测率为93.71%,YOLO-voc网络模型检测率为94.48%,改进YOLO-vocRV网络模型检测率达到了96.95%,因此,改进网络模型YOLOvocRV检测率较高;YOLO-vocRV模型精确度和召回率均聚集在0.95,因此,在获得较好精确度的条件下损失的召回率明显较小,达到了很好的折中;采用混合样本训练后,基于YOLO-vocRV模型的车辆多目标检测方法的检测率在自由流状态下可达99.11%,同步流状态下可达97.62%,阻塞流状态下可达到97.14%,具有较小的误检率和良好的鲁棒性。 展开更多
关键词 交通信息工程 深度学习 多目标检测 Darknet框架 yolo v2算法 网络模型
原文传递
基于YOLO和嵌入式系统的车流量检测 被引量:17
2
作者 马永杰 宋晓凤 《液晶与显示》 CAS CSCD 北大核心 2019年第6期613-618,共6页
城市道路普遍存在机动车、非机动车、行人的人车混行路段,车辆目标的准确识别与统计成为视频方法检测混合交通流量的关键问题。本文提出了基于深度学习YOLO(You Only Look Once)的车流量检测算法。用YOLO v2检测道路上移动的目标,对检... 城市道路普遍存在机动车、非机动车、行人的人车混行路段,车辆目标的准确识别与统计成为视频方法检测混合交通流量的关键问题。本文提出了基于深度学习YOLO(You Only Look Once)的车流量检测算法。用YOLO v2检测道路上移动的目标,对检出目标中的车辆目标进行识别与筛选,设置感兴趣区域,在车辆目标经过感兴趣区域时计数,并用核相关滤波器跟踪车辆,避免车辆重复计数;在ARM上利用该算法实现了混合交通视频中的车流量检测。测试结果表明,该方法中车辆的检测、跟踪、计数结果良好,可应用于混合交通中的车流量检测。 展开更多
关键词 深度学习算法yolo v2 核相关滤波器 车流量检测 嵌入式RK3399
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部