[目的/意义]炭疽病(anthracnose)作为油茶生长过程中重要的病害,其严重程度的精准判定对于精准施药和科学管理具有重大意义。本研究提出了一种改进YOLACT(You Only Look At CoefficienTs)分级模型Camellia-YOLACT,旨在实现对油茶叶片炭...[目的/意义]炭疽病(anthracnose)作为油茶生长过程中重要的病害,其严重程度的精准判定对于精准施药和科学管理具有重大意义。本研究提出了一种改进YOLACT(You Only Look At CoefficienTs)分级模型Camellia-YOLACT,旨在实现对油茶叶片炭疽病感染严重程度的自动、高效判定。[方法]首先在YOLACT主干网络部分使用Swin-Transformer来进行特征提取。Transformer架构的自注意力机制拥有全局感受野及移位窗口等特性,有效地增强了模型的特征提取能力;引入加权双向特征金字塔网络,融合不同尺度的特征信息,加强模型对不同尺度目标的检测能力,提高模型的检测精度;在激活函数的选择上,采用非线性能力更强的HardSwish激活函数替换原模型的ReLu激活函数。由于HardSwish在负值区域不是完全截断,对于输入数据中的噪声具有更高的鲁棒性,自然环境下的图像有着复杂的背景和前景信息,HardSwish的鲁棒性有助于模型更好地处理这些情况,进一步提升精度。[结果和讨论]采用迁移学习方式在油茶炭疽病感染严重程度分级数据集上进行实验验证。消融实验结果表明,本研究提出的Camellia-YOLACT模型的mAP75为86.8%,较改进前提升5.7%;mAPall为78.3%,较改进前提升2.5%;mAR为91.6%,较改进前提升7.9%。对比实验结果表明,Camellia-YOLACT在精度和速度方面表现均好于SOLO(Segmenting Objects by Locations),与Mask R-CNN算法相比,其检测速度提升了2倍。在室外的36组分级实验中进一步验证了Camellia-YOLACT模型的性能,其对油茶炭疽病严重程度的分级正确率达到了94.4%,K值平均绝对误差为1.09%。[结论]本研究提出的Camellia-YOLACT模型在油茶叶片和炭疽病病斑分割上具有较高的精度,能够实现对油茶炭疽病严重程度的自动分级,为油茶病害的精准防治提供技术支持,进一步推动油茶炭疽病诊断的自动化和智能化。展开更多
玉米果穗的表型参数是玉米生长状态的重要表征,生长状况的好坏直接影响玉米产量和质量。为方便无人巡检机器人视觉系统高通量、自动化获取玉米表型参数,该研究基于YOLACT(you only look at coefficients)提出一种高精度-速度平衡的玉米...玉米果穗的表型参数是玉米生长状态的重要表征,生长状况的好坏直接影响玉米产量和质量。为方便无人巡检机器人视觉系统高通量、自动化获取玉米表型参数,该研究基于YOLACT(you only look at coefficients)提出一种高精度-速度平衡的玉米果穗分割模型SwinT-YOLACT。首先使用Swin-Transformer作为模型主干特征提取网络,以提高模型的特征提取能力;然后在特征金字塔网络之前引入有效通道注意力机制,剔除冗余特征信息,以加强对关键特征的融合;最后使用平滑性更好的Mish激活函数替换模型原始激活函数Relu,使模型在保持原有速度的同时进一步提升精度。基于自建玉米果穗数据集训练和测试该模型,试验结果表明,SwinT-YOLACT的掩膜均值平均精度为79.43%,推理速度为35.44帧/s,相较于原始YOLACT和其改进算法YOLACT++,掩膜均值平均精度分别提升了3.51和3.38个百分点;相较于YOLACT、YOLACT++和Mask R-CNN模型,推理速度分别提升了3.39、2.58和28.64帧/s。该模型对玉米果穗有较为优秀的分割效果,适于部署在无人巡检机器人视觉系统上,为玉米生长状态监测提供技术支撑。展开更多
基于深度学习的遥感图像检测在农业生产、军事打击等领域都有所应用。但深度学习模型有计算复杂度高和参数量大的问题,而实际部署深度模型的边缘设备计算性能有限。文章以高分辨率遥感图像作为研究对象,对单阶段的实例分割网络算法进行...基于深度学习的遥感图像检测在农业生产、军事打击等领域都有所应用。但深度学习模型有计算复杂度高和参数量大的问题,而实际部署深度模型的边缘设备计算性能有限。文章以高分辨率遥感图像作为研究对象,对单阶段的实例分割网络算法进行改进,在Yolact(You Only Look At CoefficienTs)网络的基础上提出一种融入注意力机制和可变形卷积的轻量级实例分割算法。使用NWPU VHR-10遥感图像数据集对所提算法进行性能评估,实验结果表明,该算法能在保持性能的情况下减少计算复杂度和参数量。展开更多
文摘[目的/意义]炭疽病(anthracnose)作为油茶生长过程中重要的病害,其严重程度的精准判定对于精准施药和科学管理具有重大意义。本研究提出了一种改进YOLACT(You Only Look At CoefficienTs)分级模型Camellia-YOLACT,旨在实现对油茶叶片炭疽病感染严重程度的自动、高效判定。[方法]首先在YOLACT主干网络部分使用Swin-Transformer来进行特征提取。Transformer架构的自注意力机制拥有全局感受野及移位窗口等特性,有效地增强了模型的特征提取能力;引入加权双向特征金字塔网络,融合不同尺度的特征信息,加强模型对不同尺度目标的检测能力,提高模型的检测精度;在激活函数的选择上,采用非线性能力更强的HardSwish激活函数替换原模型的ReLu激活函数。由于HardSwish在负值区域不是完全截断,对于输入数据中的噪声具有更高的鲁棒性,自然环境下的图像有着复杂的背景和前景信息,HardSwish的鲁棒性有助于模型更好地处理这些情况,进一步提升精度。[结果和讨论]采用迁移学习方式在油茶炭疽病感染严重程度分级数据集上进行实验验证。消融实验结果表明,本研究提出的Camellia-YOLACT模型的mAP75为86.8%,较改进前提升5.7%;mAPall为78.3%,较改进前提升2.5%;mAR为91.6%,较改进前提升7.9%。对比实验结果表明,Camellia-YOLACT在精度和速度方面表现均好于SOLO(Segmenting Objects by Locations),与Mask R-CNN算法相比,其检测速度提升了2倍。在室外的36组分级实验中进一步验证了Camellia-YOLACT模型的性能,其对油茶炭疽病严重程度的分级正确率达到了94.4%,K值平均绝对误差为1.09%。[结论]本研究提出的Camellia-YOLACT模型在油茶叶片和炭疽病病斑分割上具有较高的精度,能够实现对油茶炭疽病严重程度的自动分级,为油茶病害的精准防治提供技术支持,进一步推动油茶炭疽病诊断的自动化和智能化。
文摘玉米果穗的表型参数是玉米生长状态的重要表征,生长状况的好坏直接影响玉米产量和质量。为方便无人巡检机器人视觉系统高通量、自动化获取玉米表型参数,该研究基于YOLACT(you only look at coefficients)提出一种高精度-速度平衡的玉米果穗分割模型SwinT-YOLACT。首先使用Swin-Transformer作为模型主干特征提取网络,以提高模型的特征提取能力;然后在特征金字塔网络之前引入有效通道注意力机制,剔除冗余特征信息,以加强对关键特征的融合;最后使用平滑性更好的Mish激活函数替换模型原始激活函数Relu,使模型在保持原有速度的同时进一步提升精度。基于自建玉米果穗数据集训练和测试该模型,试验结果表明,SwinT-YOLACT的掩膜均值平均精度为79.43%,推理速度为35.44帧/s,相较于原始YOLACT和其改进算法YOLACT++,掩膜均值平均精度分别提升了3.51和3.38个百分点;相较于YOLACT、YOLACT++和Mask R-CNN模型,推理速度分别提升了3.39、2.58和28.64帧/s。该模型对玉米果穗有较为优秀的分割效果,适于部署在无人巡检机器人视觉系统上,为玉米生长状态监测提供技术支撑。
文摘为了解决果园因农药过量使用导致的环境污染与农药浪费问题,提出了一种基于改进YOLACT的果树叶墙区域(Leaf wall area,LWA)实时检测方法,用于计算深度彩色双目相机采集视频中的叶墙区域距离及密度,为果园农药智慧喷施作业中农药喷洒剂量与喷洒距离的实时调整提供依据。首先,使用ConvNeXt主干网络改进了YOLACT模型,并引入NAM通道注意力机制对模型进行了优化;其次,提出了基于深度学习的果树叶墙密度检测方法;最后,通过阈值法排除深度图像中的干扰信息,简化了果树叶墙平均距离计算方法的处理流程。实验结果表明,改进YOLACT模型分割的APall为91.6%,相较于原始模型上升3.0个百分点,与YOLACT++、Mask R CNN和QueryInst模型相比分别高2.9、1.2、4.1个百分点;叶墙密度估计算法在叶墙顶部、中部和底部的均方根误差(Root mean square error,RMSE)分别为1.49%、0.82%、2.20%;叶墙区域实时检测方法的处理速度可达29.96 f/s。
文摘基于深度学习的遥感图像检测在农业生产、军事打击等领域都有所应用。但深度学习模型有计算复杂度高和参数量大的问题,而实际部署深度模型的边缘设备计算性能有限。文章以高分辨率遥感图像作为研究对象,对单阶段的实例分割网络算法进行改进,在Yolact(You Only Look At CoefficienTs)网络的基础上提出一种融入注意力机制和可变形卷积的轻量级实例分割算法。使用NWPU VHR-10遥感图像数据集对所提算法进行性能评估,实验结果表明,该算法能在保持性能的情况下减少计算复杂度和参数量。