To elucidate the effects of Cl^(-)and Ca^(2+) on the corrosion and scale formation of 3Cr steel in CO_(2) floodingproduced fluid,corrosion weight loss experiments,and titration experiments were conducted.The resulting...To elucidate the effects of Cl^(-)and Ca^(2+) on the corrosion and scale formation of 3Cr steel in CO_(2) floodingproduced fluid,corrosion weight loss experiments,and titration experiments were conducted.The resulting products were characterized using scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).This study examined the corrosion and scaling behavior of 3Cr steel under the influence of Cl^(-)and Ca^(2+).The results indicate that both Cl^(-)and Ca^(2+)promote the corro sion of 3Cr steel.Notably,Cl^(-)diminishes the promoting effect of Ca^(2+)on corro sion and inhibits scaling,revealing a mutual enhancement between corrosion and scaling.The mechanisms of localized corrosion under varying concentrations of Cl^(-)and Ca^(2+)differ;under-scale corrosion occurs in environments with 5000 mg·L^(-1) Cl^(-),while Cl^(-)induced corrosion is observed in 20000 mg·L^(-1) Cl^(-)environments.This study highlights that under the synergistic effects of Cl^(-),Ca^(2+),and scaling processes,the protective product film dissolves,thereby influencing both corrosion and scaling processes.展开更多
基金the support from the National Natural Science Foundation of China (51774249)the Sichuan Science and Technology Program (21JCQN0066)。
文摘To elucidate the effects of Cl^(-)and Ca^(2+) on the corrosion and scale formation of 3Cr steel in CO_(2) floodingproduced fluid,corrosion weight loss experiments,and titration experiments were conducted.The resulting products were characterized using scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).This study examined the corrosion and scaling behavior of 3Cr steel under the influence of Cl^(-)and Ca^(2+).The results indicate that both Cl^(-)and Ca^(2+)promote the corro sion of 3Cr steel.Notably,Cl^(-)diminishes the promoting effect of Ca^(2+)on corro sion and inhibits scaling,revealing a mutual enhancement between corrosion and scaling.The mechanisms of localized corrosion under varying concentrations of Cl^(-)and Ca^(2+)differ;under-scale corrosion occurs in environments with 5000 mg·L^(-1) Cl^(-),while Cl^(-)induced corrosion is observed in 20000 mg·L^(-1) Cl^(-)environments.This study highlights that under the synergistic effects of Cl^(-),Ca^(2+),and scaling processes,the protective product film dissolves,thereby influencing both corrosion and scaling processes.