La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation pr...La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation properties.However,the cycling stability is not currently satisfactory enough which plagues its application.Herein,a strategy of partially substituting La with the Y element is proposed to boost the capacity durability of La-Mg-Ni-based alloys.Furthermore,phase structure regulation is implemented simultaneously to obtain the A5 B19-type alloy with good crystal stability specifically.It is found that Y promotes the phase formation of the Pr5 Co19-type phase after annealing at 985℃.The alloy containing Y contributes to the superior rate capability resulting from the promoted hydrogen diffusion rate.Notably,Y substitution enables strengthening the anti-pulverization ability of the alloy in terms of increasing the volume match between[A_(2)B_(4)]and[AB5]subunits,and effectively enhances the anti-corrosion ability of the alloy due to high electronegativity,realizing improved long-term cycling stability of the alloy from 74.2%to 78.5%after cycling 300 times.The work is expected to shed light on the composition and structure design of the La-Mg-Ni-based hydrogen storage alloy for Ni-MH batteries.展开更多
The effect of yttrium(Y)addition on the oxidation behavior of a Ni-based directionally solidified single-crystal superalloy is investigated in this study.Isothermal oxidation tests for samples with different levels of...The effect of yttrium(Y)addition on the oxidation behavior of a Ni-based directionally solidified single-crystal superalloy is investigated in this study.Isothermal oxidation tests for samples with different levels of Y addition are conducted at 1100℃ in air.The Y content of the samples is determined by the actual pickup amount obtained from an Inductively Coupled Plasma-Atomic Emission Spectrometry test.It is discovered that the addition of Y increases the oxide resistance by the scale of an adhesive double-layer oxide,which is composed of Al_(2)O_(3) and spinel Ni(Cr,Al)_(2)O_(4).With 70 ppm of Y addition,the oxidation mass gain decreases from 12.6 g/m^(2) for the alloy without Y addition to 5.3 g/m^(2),and the oxidation rate decreases significantly.In addition,the internal nitride disappears after Y doping because of an increase in oxidation scale adherence and a decrease in oxidation products.In this study,the alloy with 660 ppm Y addition demonstrates the best oxidation resistance.展开更多
To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was in...To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was investigated by using optical microscopy,scanning electron microscopy and tensile tests.The results show that mechanical properties of as-cast Mg−4Li−3Al alloys with Y addition are significantly improved as a result of hot extrusion.The best comprehensive mechanical properties are obtained in hot-extruded Mg−4Li−3Al−1.5Y alloy,which possesses high ultimate tensile strength(UTS=248 MPa)and elongation(δ=27%).The improvement of mechanical properties of hot-extruded Mg−4Li−3Al−1.5Y alloy was mainly attributed to combined effects of grain refinement,solid solution strengthening and precipitation strengthening.展开更多
A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the pol...A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.展开更多
基金the financial support by the National Nat-ural Science Foundation of China(Nos.52201282,52071281,52371239)the China Postdoctoral Science Foundation(No.2023M742945)+4 种基金Hebei Provincial Postdoctoral Science Foundation(No.B2023003023)the Science Research Project of Hebei Education Department(No.BJK2022033)the Natural Science Foundation of Hebei Province(No.C2022203003)the Inner Mongolia Science and Technology Major Project(No.2020ZD0012)the Baotou Science and Technology Planning Project(No.XM2022BT09).
文摘La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation properties.However,the cycling stability is not currently satisfactory enough which plagues its application.Herein,a strategy of partially substituting La with the Y element is proposed to boost the capacity durability of La-Mg-Ni-based alloys.Furthermore,phase structure regulation is implemented simultaneously to obtain the A5 B19-type alloy with good crystal stability specifically.It is found that Y promotes the phase formation of the Pr5 Co19-type phase after annealing at 985℃.The alloy containing Y contributes to the superior rate capability resulting from the promoted hydrogen diffusion rate.Notably,Y substitution enables strengthening the anti-pulverization ability of the alloy in terms of increasing the volume match between[A_(2)B_(4)]and[AB5]subunits,and effectively enhances the anti-corrosion ability of the alloy due to high electronegativity,realizing improved long-term cycling stability of the alloy from 74.2%to 78.5%after cycling 300 times.The work is expected to shed light on the composition and structure design of the La-Mg-Ni-based hydrogen storage alloy for Ni-MH batteries.
基金Supported by Preliminary Research Project of China (Grant No. J2019-Ⅵ-0023)
文摘The effect of yttrium(Y)addition on the oxidation behavior of a Ni-based directionally solidified single-crystal superalloy is investigated in this study.Isothermal oxidation tests for samples with different levels of Y addition are conducted at 1100℃ in air.The Y content of the samples is determined by the actual pickup amount obtained from an Inductively Coupled Plasma-Atomic Emission Spectrometry test.It is discovered that the addition of Y increases the oxide resistance by the scale of an adhesive double-layer oxide,which is composed of Al_(2)O_(3) and spinel Ni(Cr,Al)_(2)O_(4).With 70 ppm of Y addition,the oxidation mass gain decreases from 12.6 g/m^(2) for the alloy without Y addition to 5.3 g/m^(2),and the oxidation rate decreases significantly.In addition,the internal nitride disappears after Y doping because of an increase in oxidation scale adherence and a decrease in oxidation products.In this study,the alloy with 660 ppm Y addition demonstrates the best oxidation resistance.
基金The work was supported by the National Natural Science Foundation of China(No.51401115)the Promoted Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province,China(No.BS2013CL034)partially by the Fundamental Research Funds of Shandong University,China(2016JC016).
文摘To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was investigated by using optical microscopy,scanning electron microscopy and tensile tests.The results show that mechanical properties of as-cast Mg−4Li−3Al alloys with Y addition are significantly improved as a result of hot extrusion.The best comprehensive mechanical properties are obtained in hot-extruded Mg−4Li−3Al−1.5Y alloy,which possesses high ultimate tensile strength(UTS=248 MPa)and elongation(δ=27%).The improvement of mechanical properties of hot-extruded Mg−4Li−3Al−1.5Y alloy was mainly attributed to combined effects of grain refinement,solid solution strengthening and precipitation strengthening.
基金the National Natural Science Foundation of China (No. 50571081)the Aviation Foundation of China (No. 04G53024).
文摘A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.