期刊文献+
共找到427篇文章
< 1 2 22 >
每页显示 20 50 100
Biosynthesis of xylo-oligosaccharides from wheat straw xylan through the synergistic hydrolysis by xylanase Xyn11A and arabinofuranosidase Abf62A
1
作者 HU Die XU Daozhu +3 位作者 LU Zhiyi TANG Wei FAN Bo HE Yucai 《合成生物学》 北大核心 2025年第4期972-986,共15页
Xylo-oligosaccharides(XOSs)are a category of functional oligosaccharides primarily composed of 2-7 xylose units linked byβ-1,4 glycosidic bonds.They are recognized as soluble dietary fibers with prebiotic properties.... Xylo-oligosaccharides(XOSs)are a category of functional oligosaccharides primarily composed of 2-7 xylose units linked byβ-1,4 glycosidic bonds.They are recognized as soluble dietary fibers with prebiotic properties.Recently, there has been significant interest in manufacturing XOSs from xylan extracted from lignocellulosic biomass using enzyme catalysis under mild conditions. In this work, the arabinofuranosidase Abf62A gene was cloned from Aspergillus usamii genomic DNA through sequential molecular processes and expressed in Pichia pastoris X33. The xylan (100 g/L) extracted xylan in wheat straw (WS) was biologically hydrolyzed into 50.32 g/L of XOSs by xylanase Xyn11A (300 U/g substrate) and arabinofuranase Abf62A (20 U/g substrate), which indicated a notable synergistic effect compared to the 34.42 g/L XOSs produced via Xyn11A. The 50.32 g/L of XOSs products comprised xylobiose (31.71 g/L), xylotriose (15.92 g/L), xylotetraose (1.65 g/L) and xylopentaose (1.04 g/L). Notably, the combined content of xylobiose and xylotriose accounted for up to 94.7%. The XOSs purified from the enzyme hydrolysate could effectually scavenge free radicals, and the antioxidant activity was more than 90%. In summary, XOSs were biologically manufactured from wheat straw xylan through the synergistic biocatalysis via xylanase and arabinofuranosidase Abf62A in a green and sustainable way, rending one kind of prebiotic oligosaccharides with substantial positive effects on human and animal health. 展开更多
关键词 ARABINOFURANOSIDASE xylanASE xylo-oligosaccharides xylan BIOSYNTHESIS
在线阅读 下载PDF
Comparative study on the structural properties and electrochemical performance of xylan-derived char catalyzed by Na_(2)CO_(3) at various concentrations
2
作者 LI Yamin GU Yue +1 位作者 WANG Shuang TAN Jun 《燃料化学学报(中英文)》 北大核心 2025年第5期638-645,共8页
In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sod... In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sodium-ion batteries was tested.The characterization of X-ray microscopy and scanning electron microscopy demonstrated that the morphological structure of xylan char was altered due to the addition of Na_(2)CO_(3) catalyst.The increasement of the Na_(2)CO_(3)/xylan ratio resulted in a slenderization of the triangular prism shape of the char skeleton and a reduction in porosity.X-ray diffraction analysis revealed that Na_(2)CO_(3) promoted the growth of the(004)crystal plane of graphite during xylan pyrolysis,while inhibiting the formation of the(100/101)crystal planes.Raman spectroscopy analysis indicated that the presence of Na_(2)CO_(3)had changed the graphitization degree of xylan char.Electrochemical tests further showed that char prepared with a Na_(2)CO_(3)/xylan mass ratio of 1∶1 exhibited the highest sodium storage capacity.This study provides a pathway for the rational design carbon materials derived from xylan for future applications in energy storage devices. 展开更多
关键词 xylan char alkali metal salts biomass CATALYSIS energy storage
在线阅读 下载PDF
The DUF579 proteins GhIRX15s regulate cotton fiber development by interacting with proteins involved in xylan synthesis
3
作者 Mengyun Li Feng Chen +6 位作者 Jingwen Luo Yanan Gao Jinglong Cai Wei Zeng Monika S.Doblin Gengqing Huang Wenliang Xu 《The Crop Journal》 SCIE CSCD 2024年第4期1112-1125,共14页
Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose an... Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose and lignin.To dissect the roles of hemicellulosic polysaccharides during fiber development,four IRREGULAR XYLEM 15(IRX15)genes,GhIRX15-1/-2/-3/-4,were functionally characterized in cotton.These genes encode DUF579 domain-containing proteins,which are homologs of AtIRX15 involved in xylan biosynthesis.The four GhIRX15 genes were predominantly expressed during fiber secondary wall thickening,and the encoded proteins were localized to the Golgi apparatus.Each GhIRX15 gene could restore the xylan deficient phenotype in the Arabidopsis irx15irx15l double mutant.Silencing of GhIRX15s in cotton resulted in shorter mature fibers with a thinner cell wall and reduced cellulose content as compared to the wild type.Intriguingly,GhIRX15-2 and GhIRX15-4 formed homodimers and heterodimers.In addition,the GhIRX15s showed physical interaction with glycosyltransferases GhGT43C,GhGT47A and GhGT47B,which are responsible for synthesis of the xylan backbone and reducing end sequence.Moreover,the GhIRX15s can form heterocomplexes with enzymes involved in xylan modification and side chain synthesis,such as GhGUX1/2,GhGXM1/2 and GhTBL1.These findings suggest that GhIRX15s participate in fiber xylan biosynthesis and modulate fiber development via forming large multiprotein complexes. 展开更多
关键词 Cotton fiber xylan biosynthesis GhIRX15s Protein-protein interaction Protein complexes
在线阅读 下载PDF
Study on the green extraction of corncob xylan by deep eutectic solvent
4
作者 Bingyu Jiao Le Wang +3 位作者 Haitao Gui Zifu Ni Rong Du Yuansen Hu 《Grain & Oil Science and Technology》 CAS 2024年第1期50-59,共10页
Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other ... Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a new approach for high value conversion of corn cob and the clean production of xylan. 展开更多
关键词 CORNCOB Deep eutectic solvent xylan Process optimization EXTRACTION
在线阅读 下载PDF
Paddy Husk as Support for Solid State Fermentation to Produce Xylanase from Bacillus pumilus 被引量:4
5
作者 Ranganathan KAPILAN Vasanthy ARASARATNAM 《Rice science》 SCIE 2011年第1期36-45,共10页
To optimize culture conditions for xylanase production by solid state fermentation (SSF) using Bacillus pumilus, with paddy husk as support, solid medium contained 200 g of paddy husk with 800 mL of liquid fermentat... To optimize culture conditions for xylanase production by solid state fermentation (SSF) using Bacillus pumilus, with paddy husk as support, solid medium contained 200 g of paddy husk with 800 mL of liquid fermentation medium [xylan, 20.0 g/L; peptone, 2.0 g/L; yeast extract, 2.5 g/L; K2HPO4, 2.5 g/L; KH2PO4, 1.0 g/L; NaCl, 0.1 g/L; (NH4)2SO4, 2.0 g/L, CaCl2-2H2O, 0.005 g/L; MgCl2.6H2O, 0.005 g/L; and FeCI3, 0.005 g/L] at pH 9.0 was applied. The highest xylanase activity (142.0 ±0.47 U/g DM] was obtained on the 6th day at 30℃ The optimized paddy husk to liquid fermentation medium ratio was 2:9, and the optimized culture temperature was 40℃. When commercial Birchwood xylan was replaced with different concentrations of corncob, xylanase production was maximized (224.2 U/g DM) in the medium with 150 g/L corncob. Xylanase production was increased by sucrose, fructose and arabinose, whereas reduced by glucose, galactose, lactose and amylose. When organic nitrogen sources were replaced with locally available nitrogen sources such as groundnut powder or sesame seedcake powder or coconut seedcake powder or soy meal powder, the highest xylanase production (290.7 U/g DM) was obtained in the medium with soy meal powder and 16.0 g/L of soy meal powder was the optimum (326.5±0.34 U/g DM). Based on the optimization studies, B. pumilus produced 2.3 times higher xylanase activity. The medium cost was reduced from 2 458.3 to 178.3 SLR/kg and the total activity which could be obtained from 1 kg of the medium was increased from 48 624 to 220 253 Units. 展开更多
关键词 Bacillus pumilus solid state fermentation xylanASE paddy husk xylan CORNCOB soymeal
在线阅读 下载PDF
Effects of protein and lignin on cellulose and xylan anaylses of lignocellulosic biomass 被引量:5
6
作者 James MacLellan Rui Chen +3 位作者 Zhengbo Yue Robert Kraemer Yan Liu Wei Liao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第6期1268-1275,共8页
Interactions of lignocellulosic components during fiber analysis were investigated using the highly adopted compositional analysis procedure from the National Renewable Energy Laboratory(NREL),USA.Synthetic feedstoc... Interactions of lignocellulosic components during fiber analysis were investigated using the highly adopted compositional analysis procedure from the National Renewable Energy Laboratory(NREL),USA.Synthetic feedstock samples were used to study the effects of lignin/protein,cellulose/protein,and xylan/protein interaction on carbohydrate analysis.Disregarding structural influence in the synthetic samples,lignin and protein components were the most significant(P〈0.05)factors on cellulose analysis.Measured xylan was consistent and unaffected by content variation throughout the synthetic analysis.Validation of the observed relationships from synthetic feedstocks was fulfilled using real lignocellulosic feedstocks:corn stover,poplar,and alfalfa,in which similar results have been obtained,excluding cellulose analysis of poplar under higher protein content and xylan analysis of alfalfa under higher protein content.The results elucidated that according to their protein and lignin contents of different lignocellulosic materials,accuracy of the NREL method on cellulose and xylan analyses could be improved by applying a stronger extraction step to replace water/ethanol extraction. 展开更多
关键词 lignocellulosic biomass CELLULOSE xylan LIGNIN PROTEIN
在线阅读 下载PDF
Conversion of xylose and xylan into furfural in biorenewable choline chloride–oxalic acid deep eutectic solvent with the addition of metal chloride 被引量:5
7
作者 Lu-Xin Zhang Han Yu +2 位作者 Hong-Bing Yu Ze Chen Lei Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第8期1132-1136,共5页
An environmentally benign processing approach for furfural production from xylose and xylan under very mild conditions(353–373 K) was developed with the addition of metal chlorides in ChCl–oxalic acid(a deep eute... An environmentally benign processing approach for furfural production from xylose and xylan under very mild conditions(353–373 K) was developed with the addition of metal chlorides in ChCl–oxalic acid(a deep eutectic solvent(DES)) synthesized from cheap and renewable starting materials). ChCl–oxalic acid acted as both a Br?nsted acid catalyst and a reaction medium in this catalytic route. In addition, a biphasic system with methyl isobutyl ketone as an extracting reagent(DES/MIBK) to further increase furfural yield was also proposed. This processing approach for producing furfural eliminated the large energy consumption for high pressure saturated steam and the generation of acidic effluent, which was very difficult to handle. The whole catalytic system was more environmentally friendly compared with the commercial process for furfural production. 展开更多
关键词 FURFURAL XYLOSE xylan
原文传递
High Oxygen Nanocomposite Barrier Films Based on Xylan and Nanocrystalline Cellulose 被引量:5
8
作者 Amit Saxena Thomas J.Elder +1 位作者 Jeffrey Kenvin Arthur J.Ragauskas 《Nano-Micro Letters》 SCIE EI CAS 2010年第4期235-241,共7页
The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan,sorbitol and nanocrystalline cellulose.The morphology of the resulting nanocomposite ... The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan,sorbitol and nanocrystalline cellulose.The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more open structure as compared to xylan-sorbitol films containing sulfonated nanocrystalline cellulose.The average pore diameter,bulk density,porosity and tortuosity factor measurements of control xylan films and nanocomposite xylan films were examined by mercury intrusion porosimetry techniques.Xylan films reinforced with nanocrystalline cellulose were denser and exhibited higher tortuosity factor than the control xylan films.Control xylan films had average pore diameter,bulk density,porosity and tortuosity factor of 0.1730 μm,0.6165 g/ml,53.0161% and 1.258,respectively as compared to xylan films reinforced with 50% nanocrystalline cellulose with average pore diameter of 0.0581 μm,bulk density of 1.1513 g/ml,porosity of 22.8906% and tortuosity factor of 2.005.Oxygen transmission rate tests demonstrated that films prepared with xylan,sorbitol and 5%,10%,25% and 50% sulfonated nanocrystalline cellulose exhibited a significantly reduced oxygen permeability of 1.1387,1.0933,0.8986 and 0.1799 cm^3×μm/m^2×d×k Pa respectively with respect to films prepared solely from xylan and sorbitol with a oxygen permeability of 189.1665 cm^3×μm/m^2×d×k Pa.These properties suggested these nanocomposite films have promising barrier properties. 展开更多
关键词 NANOCOMPOSITES xylan Nanocrystalline cellulose Oxygen barrier
在线阅读 下载PDF
Optimization of Microwave Assisted Alkaline Extraction of Xylan from Birch Wood Using Response Surface Methodology 被引量:1
9
作者 Suhara Panthapulakkal Mohini Sain 《Journal of Materials Science and Chemical Engineering》 2013年第6期38-50,共13页
The main purpose of this study was to optimize microwave assisted alkaline extraction of the hemicellulose, xylan, from birch wood. The simultaneous effects of process variables such as time (10 - 30 minutes), concent... The main purpose of this study was to optimize microwave assisted alkaline extraction of the hemicellulose, xylan, from birch wood. The simultaneous effects of process variables such as time (10 - 30 minutes), concentration of sodium hydroxide solution (4 - 8 wt%), solid to liquid ratio (1:8 to 1:20, g:mL), and sample size (5 - 10 g) on the temperature of the wood slurry, wood dissolution, and yield of extraction were evaluated. A central composite design (CCD) and response surface methodology (RSM) were used for the optimization of the extraction process. Based on the CCD, quadratic models were developed to correlate the extraction process variables with the responses such as temperature of wood slurry, wood dissolution, and yield of xylan and the models were analyzed using appropriate statistical methods (ANOVA). Statistical analysis showed that all the models developed were found to be adequate for the prediction of the respective responses. Optimization of the process was performed using a numerical optimization available in the software to maximize the yield of xylan and the optimum process variables for the maximum yield of xylan was found to be: 10 g of wood fibres, 8 wt% of NaOH solution, 1:10 solid to liquid ratio (g:mL) and 25 minutes of irradiation time. About 72.5% of the xylan present in the birch wood was extracted using the optimized extraction parameters. 展开更多
关键词 BIOMASS OPTIMIZATION MICROWAVE EXTRACTION Hemicelluloses xylan
暂未订购
Global identification of genes associated with xylan biosynthesis in cotton fiber 被引量:2
10
作者 CHEN Feng GUO Yanjun +4 位作者 CHEN Li GAN Xinli LIU Min LI Juan XU Wenliang 《Journal of Cotton Research》 2020年第3期184-198,共15页
Background:Mature cotton fiber secondary cell wall comprises largely of cellulose(>90%)and small amounts of xylan and lignin.Little is known about the cotton fiber xylan biosynthesis by far.Results:To comprehensive... Background:Mature cotton fiber secondary cell wall comprises largely of cellulose(>90%)and small amounts of xylan and lignin.Little is known about the cotton fiber xylan biosynthesis by far.Results:To comprehensively survey xylan biosynthetic genes in cotton fiber,we identified five IRX9,five IRX10,one IRX14,six IRX15,two FRA8,one PARVUS,eight GUX,four GXM,two RWA,two AXY9,13 TBL genes by using phylogenetic analysis coupled with expression profile analysis and co-expression analyses.In addition,we also identified two GT61 members,two GT47 members,and two DUF579 family members whose homologs in Arabidopsis were not functionally characterized.These 55 genes were regarded as the most probable genes to be involved in fiber xylan biosynthesis.Further complementation analysis indicated that one IRX10 like and two FRA8 related genes were able to partially recover the irregular xylem phenotype conferred by the xylan deficiency in their respective Arabidopsis mutant.We conclude that these genes are functional orthologs of respective genes that are implicated in GX biosynthesis.Conclusion:The list of 55 cotton genes presented here provides not only a solid basis to uncover the biosynthesis of xylan in cotton fiber,but also a genetic resource potentially useful for future studies aiming at fiber improvement via biotechnological approaches. 展开更多
关键词 Cotton fiber Secondary cell wall xylan biosynthesis Expression profile CO-EXPRESSION
在线阅读 下载PDF
Facile Approach for Preparation of Xylan-based Double-network Hydrogels 被引量:1
11
作者 Ziwen Lyu Jun Rao +4 位作者 Xianming Qi Ziyi Bai Siyu Jia Zhenhua Su Feng Peng 《Paper And Biomaterials》 CAS 2022年第1期19-27,共9页
In this study,xylan-based double-network(DN)hydrogels(xylanbased DN gels)with excellent mechanical properties were prepared using acrylic acid and acrylamide(AM)based on a DN approach.The first layer network was obtai... In this study,xylan-based double-network(DN)hydrogels(xylanbased DN gels)with excellent mechanical properties were prepared using acrylic acid and acrylamide(AM)based on a DN approach.The first layer network was obtained by grafting and crosslinking polyacrylic acid(PAA)molecular chains onto xylan with ammonium persulfate(APS)as the initiator and N,N'-methylenebisacrylamide(MBA)as the crosslinking agent;this network was subsequently immersed into an aqueous AM monomer in the presence of APS and MBA for the preparation of the second layer network.The results showed that the double networks were crosslinked by covalent bonds and that the mechanical properties of the xylan-based DN gels were enhanced.Thus,the xylan-based DN gels exhibited a maximum compression stress of 24.9 MPa.The xylan-based DN gels could also recover 97%of their original height after 15 repeated compression cycles;this indicates that the xylan-based DN gels possessed high resistance to friction and wear.Therefore,the prepared xylan-based DN gels have considerable potential for tissue engineering applications. 展开更多
关键词 xylan DN gels mechanical property tissue engineering
在线阅读 下载PDF
Xylanase-producing microflora in Eastern Ghats of Andhra Pradesh,India
12
作者 G.Ramanjaneyulu A.Ramya +2 位作者 B.S.Shanthi Kumari Kanderi Dileep Kumar B.Rajasekhar Reddy 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第2期291-298,共8页
We screened soil samples collected from underneath shrubs and/or large trees at different locations in the Eastern Ghats of Andhra Pradesh for xylanase-producing microorganisms. Xylose-utilizing bacteria were numerica... We screened soil samples collected from underneath shrubs and/or large trees at different locations in the Eastern Ghats of Andhra Pradesh for xylanase-producing microorganisms. Xylose-utilizing bacteria were numerically dominant in soils of most locations whereas xylose-and xylan-utilizing actinobacteria were minor components. Xylan-utilizing fungi constituted a major share of total microbial populations in soil samples collected at half of the sites, whereas xylan-utilizing bacteria were predominant at other sampling locations. Some of the isolates of fungi exhibited xylanase activity with a range of400–4000 U/ml, indicating great potential for their uses in paper, pulping and bioethanol industries for producing value-added products. 展开更多
关键词 utilizing producing xylan microbial fungi populations Eastern utilize India letters
在线阅读 下载PDF
Structural Characteristics of Cellulose and Xylan during in vitro Fermentation by Pig Fecal Bacteria
13
作者 Ling Meng ShiLin Cao +3 位作者 XiaoJuan Ma LiHui Chen LiuLian Huang Fang Huang 《Paper And Biomaterials》 2016年第2期8-15,共8页
In this study,cellulose and xylan were in vitro fermented by pig fecal bacteria.Rapid fermentation(40 h) and extended fermentation(eight weeks)were performed.The properties and ultra-structure changes of post-fermente... In this study,cellulose and xylan were in vitro fermented by pig fecal bacteria.Rapid fermentation(40 h) and extended fermentation(eight weeks)were performed.The properties and ultra-structure changes of post-fermented solid residues were studied.In the end effluent,acetic acid,propionic acid,and butyric acid were observed to be the principal short-chain fatty acids(SCFAs) produced by anaerobic fermentation.Xylan was more accessible to bacteria than cellulose,leading to higher SCFA and lactic acid production.In addition,the crystalline structure of cellulose changed,leading to 16.3% and42.1% increases in crystallinity index for rapid and extended fermentation,respectively.Through this research,a systematic and advanced method to study the degradation chemistry of cellulose and xylan during fermentation was developed. 展开更多
关键词 CELLULOSE xylan pig fecal bacteria in vitro fermentation
在线阅读 下载PDF
Xylan公司首次将IP防火墙功能集成于校园交换网
14
《中国计算机用户》 1997年第16期34-34,共1页
美国Xylan公司近日宣布,首次为校园交换网提供IP防火墙功能。这种新功能将被集成于Xylan的Om-ni-Switch系列和Pizza-Switch系列。
关键词 xylan公司 IP防火墙 校园交换网 Om-ni-Switch系列 Pizza-Switch系列
在线阅读 下载PDF
Xylan derived carbon sphere/graphene composite film with low resistance for supercapacitor electrode
15
作者 Jihai Cai Yujin Li +2 位作者 Rongji Qin Guangsheng Li Xiaoying Wang 《Collagen and Leather》 2024年第3期93-106,共14页
Reduced graphene oxide(rGO)films suffer from low capacitance for inner unreduced oxygen functional groups,restacking of sheets and high contact resistance.Herein,carbon spheres derived from renewable xylan were added ... Reduced graphene oxide(rGO)films suffer from low capacitance for inner unreduced oxygen functional groups,restacking of sheets and high contact resistance.Herein,carbon spheres derived from renewable xylan were added to graphene oxide with large sheet area to fabricate film by gelation and filtration,followed by in situ reduction for high-performance flexible supercapacitor.rGO film with transverse size about 13 pm showed a good specific capacitance of 967 mF/cm^(2) at a scanning rate of 5 mV/sand increased to 1786 mF/cm^(2) by in situ reducing its inner part,which generally remained oxidized due to outer hindering from hydrophobic graphene.Then,by hydrothermal carbonization of xylan and activation with KOH,activated carbon sphere(aXCS)was prepared,which had a diameter of 150-200 nm and a specific capacitance of 270 F/g.The aXCS acted as spacer and connector to avoid restacking of graphene sheets and decrease interlayer contact resistance,resulting 94%increase in capacitance performance from rGO film to aXCS/rGO film.Therefore,combined in situ reduction and enhancement through compositing aXCS,the final film(aXCS/rGO-AA)showed a boosted specific capacitance of 755 mF/cm^(2) at 1 mA/cm^(2) in double electrode system,power density of 22.5-2250 mW/cm^(2),and energy density of 11.88-25.2 mWh/cm^(2).Meanwhile,aXCS/rGO-AA had outstanding cycling stability that its specific capacitance maintained 108.7%after 10,000 cycles of charge-dis-charge,showing promising potential in wearable and portable electronics. 展开更多
关键词 xylan Carbon sphere Graphene film In situ reduction SUPERCAPACITOR
在线阅读 下载PDF
半纤维素基水凝胶的制备及应用研究进展
16
作者 吴美燕 余雪景 +4 位作者 龚润竹 于光 刘超 唐艳军 李滨 《林业工程学报》 北大核心 2025年第2期1-12,共12页
近年来,随着生物质精炼技术和材料科学的不断进步,利用可降解、可再生的木质纤维素资源构筑环境友好的水凝胶材料受到了广泛的关注。半纤维素是木质纤维原料的主要组分之一,是陆地上含量仅次于纤维素的可再生多糖。半纤维素来源广泛、... 近年来,随着生物质精炼技术和材料科学的不断进步,利用可降解、可再生的木质纤维素资源构筑环境友好的水凝胶材料受到了广泛的关注。半纤维素是木质纤维原料的主要组分之一,是陆地上含量仅次于纤维素的可再生多糖。半纤维素来源广泛、成本低廉、生物相容性好,还含有大量亲水性的含氧基团,这种高度分支化和亲水性的特点,赋予其水凝胶材料许多优异的特性。半纤维素基水凝胶作为一种具有三维网络状结构的天然聚合物材料,具有良好的保水性、安全无毒、可生物降解、易于化学改性等优势;因此,其在生物医药、导电传感、环境保护等领域的应用前景十分广阔,有望代替传统的石油基水凝胶材料。笔者简要介绍了半纤维素的种类、结构、性质与提取方法,综述了近年来半纤维素基水凝胶的研究进展,包括从物理交联和化学交联两个方面介绍了半纤维素基水凝胶的制备方法、形成机理和应用性能,并重点阐述了半纤维素基水凝胶在高效吸附、药物控释、组织工程、导电传感、3D打印等领域的应用进展。最后,总结了半纤维素基水凝胶的开发与应用领域所面临的挑战,并展望了该水凝胶材料的应用前景和未来的研究方向。 展开更多
关键词 半纤维素 水凝胶 木聚糖 交联 生物降解
在线阅读 下载PDF
Molecular Dissection of Xylan Biosynthesis during Wood Formation in Poplar 被引量:12
17
作者 Chanhui Lee Quincy Teng +1 位作者 Ruiqin Zhong Zheng-Hua Ye 《Molecular Plant》 SCIE CAS CSCD 2011年第4期730-747,共18页
Xylan, being the second most abundant polysaccharide in dicot wood, is considered to be one of the factors contributing to wood biomass recalcitrance for biofuel production. To better utilize wood as biofuel feedstock... Xylan, being the second most abundant polysaccharide in dicot wood, is considered to be one of the factors contributing to wood biomass recalcitrance for biofuel production. To better utilize wood as biofuel feedstock, it is crucial to functionally characterize all the genes involved in xylan biosynthesis during wood formation. In this report, we investigated roles of poplar families GT43 and GT8 glycosyltransferases in xylan biosynthesis during wood formation. There exist seven GT43 genes in the genome of poplar (Populus trichocarpa), five of which, namely PtrGT43A, PtrGT43B, PtrGT43C, PtrGT43D, and PtrGT43E, were shown to be highly expressed in the developing wood and their encoded proteins were localized in the Golgi. Comprehensive genetic complementation coupled with chemical analyses demonstrated that overexpression of PtrGT43A/B/E but not PtrGT43C/D was able to rescue the xylan defects conferred by the Arabidopsis irx9 mutant, whereas overexpression of PtrGT43C/D but not PtrGT43A/B/E led to a complementation of the xylan defects in the Arabidopsis irx14 mutant. The essential roles of poplar GT43 members in xylan biosynthesis was further substantiated by RNAi down-regulation of GT43B in the hybrid poplar (Populus alba x tremula) leading to reductions in wall thickness and xylan content in wood, and an elevation in the abundance of the xylan reducing end sequence. Wood digestibility analysis revealed that cellulase digestion released more glucose from the wood of poplar GT43B RNAi lines than the control wood, indicating a decrease in wood biomass recalcitrance. Furthermore, RNAi down-regulation of another poplar wood-associated glycosyltransferase, PoGTSD, was shown to cause decreases in wall thickness and xylan content as well as in the abundance of the xylan reducing end sequence. Together, these findings demonstrate that the poplar GT43 members form two functionally non-redundant groups, namely PtrGT43A/B/E as functional orthologs of Arabidopsis IRX9 and PtrGT43C/D as functional orthologs ofArabidopsis IRX14, all of which are involved in the biosynthesis of xylan backbones, and that the poplar GT8D is essential for the biosynthesis of the xylan reducing end sequence. 展开更多
关键词 GLYCOSYLTRANSFERASE GT8 family GT43 family POPLAR wood formation xylan.
原文传递
IRX14 and IRX14-LIKE, Two Glycosyl Transferases Involved in Glucuronoxylan Biosynthesis and Drought Tolerance in Arabidopsis 被引量:10
18
作者 Brian D. Keppler Allan M. Showalter 《Molecular Plant》 SCIE CAS CSCD 2010年第5期834-841,共8页
IRX14 and IRX14-LIKE (IRX14L) are two closely related glycosyl transferases in the glycosyl transferase 43 (GT43) family of Arabidopsis. A T-DNA insertion mutant for IRX14 results in comparatively minor changes, s... IRX14 and IRX14-LIKE (IRX14L) are two closely related glycosyl transferases in the glycosyl transferase 43 (GT43) family of Arabidopsis. A T-DNA insertion mutant for IRX14 results in comparatively minor changes, such as irregular xylem, while a mutation for IRX14L results in no changes. However, an irx14 and irx14L double mutant severely affects growth and development, with the dwarf plants failing to produce an inflorescence stem. Plants that are homozygous for IRX14 but heterozygous for IRX14L (irx14 irx14L(±)) exhibit an intermediate phenotype, including noticeably smaller leaves, stems, and underdeveloped siliques. Additionally, the T-DNA insertion mutant for IRX14 was found to result in a drought-tolerant phenotype. Carbohydrate analysis of total cell wall extracts revealed a reduction in xylose for the irx14 and irx14 irx14L(±) mutants, consistent with a defect in glucuronoxylan biosynthesis. Immunolocalization of xylan with the LM10 antibody revealed a loss of xylan in irx14 mutants and a further reduction in the irx14 irx14L(±) mutants. IRX14L likely functions redundantly with IRX14 in glucuronoxylan biosynthesis, with IRX14 having a more important role in the process. 展开更多
关键词 Abiotic/environmental stress cell walls genetics ARABIDOPSIS irregular xylem xylan.
原文传递
Role of UDP-Glucuronic Acid Decarboxylase in Xylan Biosynthesis in Arabidopsis 被引量:4
19
作者 Beiqing Kuang Xianhai Zhao +12 位作者 Chun Zhou Wei Zeng Junli Ren Berit Ebert Cherie T. Beahan Xiaomei Deng Qingyin Zeng Gongke Zhou Monika S. Doblin Joshua L. Heazlewood Antony Bacic Xiaoyang Chen Ai-Min Wu 《Molecular Plant》 SCIE CAS CSCD 2016年第8期1119-1131,共13页
UDP-xylose (UDP-Xyl) is the Xyl donor used in the synthesis of major plant cell-wall polysaccharides such as xylan (as a backbone-chain monosaccharide) and xyloglucan (as a branching monosaccharide). The biosynt... UDP-xylose (UDP-Xyl) is the Xyl donor used in the synthesis of major plant cell-wall polysaccharides such as xylan (as a backbone-chain monosaccharide) and xyloglucan (as a branching monosaccharide). The biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GIcA) is irreversibly catalyzed by UDP- glucuronic acid decarboxylase (UXS). Until now, little has been known about the physiological roles of UXS in plants. Here, we report that AtUXS1, AtUXS2, and AtUXS4 are located in the Golgi apparatus whereas AtUXS3, AtUXS5, and AtUXS6 are located in the cytosoh Although all six single AtUXS T-DNA mu- tants and the uxsl usx2 uxs4 triple mutant show no obvious phenotype, the uxs3 uxs5 uxs6 triple mutant has an irregular xylem phenotype. Monosaccharide analysis showed that Xyl levels decreased in uxs3 uxs5 uxs6 and linkage analysis confirmed that the xylan content in uxs3 xus5 uxs6 declined, indicating that UDP-Xyl from cytosol AtUXS participates in xylan synthesis. Gel-permeation chromatography showed that the molecular weight of non-cellulosic polysaccharides in the triple mutants, mainly composed of xylans, is lower than that in the wild type, suggesting an effect on the elongation of the xylan backbone. Upon saccharification treatment stems of the uxs3 uxs5 uxs6 triple mutants released monosaccharides with a higher efficiency than those of the wild type. Taken together, our results indicate that the cytosol UXS plays a more important role than the Golgi-localized UXS in xylan biosynthesis. 展开更多
关键词 UDP-Xylose xylan UDP-Glucuronic acid decarboxylase LOCALIZATION
原文传递
Expedited extraction of xylan from corncob by power ultrasound 被引量:3
20
作者 Wade Yang Vishnu K.Ajapur +3 位作者 Kathiravan Krishnamurthy Hao Feng Ruijin Yang Taha M.Rababah 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2009年第4期76-83,共8页
Some lignocellulosic biomass like corncob contains a large amount of xylan,a valuable material for applications in food,chemical and pharmaceutical industries.Conventional extraction of xylan is a time consuming proce... Some lignocellulosic biomass like corncob contains a large amount of xylan,a valuable material for applications in food,chemical and pharmaceutical industries.Conventional extraction of xylan is a time consuming process,requiring 12 to 24 hours to complete.In this study,the efficacy of power ultrasound for reducing the extraction time and increasing the xylan yield was investigated.Two acoustic energy densities(0.18 W/mL and 0.45 W/mL)of the power ultrasound were applied to corncob for 10,20,30,and 60 min.The treated samples were steamed at 110,118 and 121℃for 30 min.At 0.45 W/mL acoustic energy density and 121℃steaming temperature,ultrasonic treatment was able to extract 39%of xylan in 43 min.In contrast,the conventional treatment was able to extract only 34%of xylan in 24 h.Power ultrasound assisted extraction reduced the processing time by 97%in addition to yield increase by 14.7%.Power ultrasound can be a potential technology for enhanced xylan extraction from corncob to result in significant processing time savings. 展开更多
关键词 Power ultrasound sonication lignocellulusic biomass xylan EXTRACTION CORNCOB STEAMING
原文传递
上一页 1 2 22 下一页 到第
使用帮助 返回顶部