As the size of semiconductor devices shrinks,there is an escalating demand for carbon hard mask films with high etching selectivity for effective pattern transfer and excellent optical transparency,especially at the 6...As the size of semiconductor devices shrinks,there is an escalating demand for carbon hard mask films with high etching selectivity for effective pattern transfer and excellent optical transparency,especially at the 633 nm alignment wavelength used in photolithography.However,simultaneously achieving high etch selectivity and high optical transparency in carbon films deposited by plasma-enhanced chemical vapor deposition(PECVD)is challenging,due to the conflicting effects of deposition temperature and ion bombardment energy.This study describes the design and implementation of a deposition-etching(dep-etch)process that addresses the challenge of inherent trade-off between low extinction coefficient(k,at 633 nm)and high etch selectivity by an integrated inductively coupled plasma and capacitive coupled plasma generator plasma-enhanced chemical vapor deposition(ICP-CCP PECVD)platform,creating a hybrid dep-etch system that decouples film transparency from etch selectivity by enhancing plasma density and coupling ion bombardment for low-temperature deposition.This process prevents the formation of large sp^(2) clusters,reducing film defects,facilitating the escape of hydrogen atoms,and promoting the formation of sp^(3)C-C bonds.Consequently,the films meet the stringent criteria for advanced carbon hard mask applications,achieving an ultra-low extinction coefficient below 0.01 at 633 nm,and etching selectivity of 18.3:1 against thermal oxide SiO_(2).展开更多
基金supported by the National Key R&D Program of China(2021YFA1500804)the National Natural Science Foundation of China(22121004,22038009,22250008)the Haihe Laboratory of Sustainable Chemical Transformations,the Program of Introducing Talents of Discipline to Universities(BP0618007)。
文摘As the size of semiconductor devices shrinks,there is an escalating demand for carbon hard mask films with high etching selectivity for effective pattern transfer and excellent optical transparency,especially at the 633 nm alignment wavelength used in photolithography.However,simultaneously achieving high etch selectivity and high optical transparency in carbon films deposited by plasma-enhanced chemical vapor deposition(PECVD)is challenging,due to the conflicting effects of deposition temperature and ion bombardment energy.This study describes the design and implementation of a deposition-etching(dep-etch)process that addresses the challenge of inherent trade-off between low extinction coefficient(k,at 633 nm)and high etch selectivity by an integrated inductively coupled plasma and capacitive coupled plasma generator plasma-enhanced chemical vapor deposition(ICP-CCP PECVD)platform,creating a hybrid dep-etch system that decouples film transparency from etch selectivity by enhancing plasma density and coupling ion bombardment for low-temperature deposition.This process prevents the formation of large sp^(2) clusters,reducing film defects,facilitating the escape of hydrogen atoms,and promoting the formation of sp^(3)C-C bonds.Consequently,the films meet the stringent criteria for advanced carbon hard mask applications,achieving an ultra-low extinction coefficient below 0.01 at 633 nm,and etching selectivity of 18.3:1 against thermal oxide SiO_(2).