The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizatio...The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizations,and governments,highlighting the urgent need for robust malware detection mechanisms.Conventional machine learning-based approaches rely on static and dynamicmalware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures.Although machine learning algorithms(MLAs)offer promising detection capabilities,their reliance on extensive feature engineering limits real-time applicability.Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,affecting deployment efficiency.This research evaluates classical MLAs and deep learningmodels to enhance malware detection performance across diverse datasets.The proposed approach integrates a novel text and imagebased detection framework,employing an optimized Support Vector Machine(SVM)for textual data analysis and EfficientNet-B0 for image-based malware classification.Experimental analysis,conducted across multiple train-test splits over varying timescales,demonstrates 99.97%accuracy on textual datasets using SVM and 96.7%accuracy on image-based datasets with EfficientNet-B0,significantly improving zero-day malware detection.Furthermore,a comparative analysis with existing competitive techniques,such as Random Forest,XGBoost,and CNN-based(Convolutional Neural Network)classifiers,highlights the superior performance of the proposed model in terms of accuracy,efficiency,and robustness.展开更多
Objective The incidence of cardiovascular diseases(CVD)is rising rapidly worldwide.Some forms of CVD,such as stroke and heart attack,are more common among patients with certain conditions.Atherosclerosis development i...Objective The incidence of cardiovascular diseases(CVD)is rising rapidly worldwide.Some forms of CVD,such as stroke and heart attack,are more common among patients with certain conditions.Atherosclerosis development is a major factor underlying cardiovascular events,such as heart attack and stroke,and its early detection may prevent such events.Ultrasound imaging of carotid arteries is a useful method for diagnosis of atherosclerotic plaques;however,an automated method to classify atherosclerotic plaques for evaluation of early-stage CVD is needed.Here,we propose an automated method for classification of high-risk atherosclerotic plaque ultrasound images.Methods Five deep learning(DL)models(VGG16,ResNet-50,GoogLeNet,XceptionNet,and SqueezeNet)were used for automated classification and the results compared with those of a machine learning(ML)-based technique,involving extraction of 23 texture features from ultrasound images and classification using a Support Vector Machine classifier.To enhance model interpretability,output gradient-weighted convolutional activation maps(GradCAMs)were generated and overlayed on original images.Results A series of indices,including accuracy,sensitivity,specificity,F1-score,Cohen-kappa index,and area under the curve values,were calculated to evaluate model performance.GradCAM output images allowed visualization of the most significant ultrasound image regions.The GoogLeNet model yielded the highest accuracy(98.20%).Conclusion ML models may be also suitable for applications requiring low computational resource.Further,DL models could be more completely automated than ML models.展开更多
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2504).
文摘The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizations,and governments,highlighting the urgent need for robust malware detection mechanisms.Conventional machine learning-based approaches rely on static and dynamicmalware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures.Although machine learning algorithms(MLAs)offer promising detection capabilities,their reliance on extensive feature engineering limits real-time applicability.Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,affecting deployment efficiency.This research evaluates classical MLAs and deep learningmodels to enhance malware detection performance across diverse datasets.The proposed approach integrates a novel text and imagebased detection framework,employing an optimized Support Vector Machine(SVM)for textual data analysis and EfficientNet-B0 for image-based malware classification.Experimental analysis,conducted across multiple train-test splits over varying timescales,demonstrates 99.97%accuracy on textual datasets using SVM and 96.7%accuracy on image-based datasets with EfficientNet-B0,significantly improving zero-day malware detection.Furthermore,a comparative analysis with existing competitive techniques,such as Random Forest,XGBoost,and CNN-based(Convolutional Neural Network)classifiers,highlights the superior performance of the proposed model in terms of accuracy,efficiency,and robustness.
基金supported by a Council of Scientific and Industrial Research-Junior Research Fellowship(CSIR-JRF#09/1013(0003)/2018)RFIER-Jio Institute"CVMI-Computer Vision in Medical Imaging"research project(RFIER-Jio Institute,Grant No.2022/33185004),under the"AI for ALL"research center.
文摘Objective The incidence of cardiovascular diseases(CVD)is rising rapidly worldwide.Some forms of CVD,such as stroke and heart attack,are more common among patients with certain conditions.Atherosclerosis development is a major factor underlying cardiovascular events,such as heart attack and stroke,and its early detection may prevent such events.Ultrasound imaging of carotid arteries is a useful method for diagnosis of atherosclerotic plaques;however,an automated method to classify atherosclerotic plaques for evaluation of early-stage CVD is needed.Here,we propose an automated method for classification of high-risk atherosclerotic plaque ultrasound images.Methods Five deep learning(DL)models(VGG16,ResNet-50,GoogLeNet,XceptionNet,and SqueezeNet)were used for automated classification and the results compared with those of a machine learning(ML)-based technique,involving extraction of 23 texture features from ultrasound images and classification using a Support Vector Machine classifier.To enhance model interpretability,output gradient-weighted convolutional activation maps(GradCAMs)were generated and overlayed on original images.Results A series of indices,including accuracy,sensitivity,specificity,F1-score,Cohen-kappa index,and area under the curve values,were calculated to evaluate model performance.GradCAM output images allowed visualization of the most significant ultrasound image regions.The GoogLeNet model yielded the highest accuracy(98.20%).Conclusion ML models may be also suitable for applications requiring low computational resource.Further,DL models could be more completely automated than ML models.