With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role i...With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role in multiple fields such as communication security,data storage,and data recovery.This article explores the fundamental principles and interrelationships of data encryption and decryption,examines the strengths,weaknesses,and applicability of symmetric,asymmetric,and hybrid encryption algorithms,and introduces key application scenarios for data encryption and decryption technology.It examines the challenges and corresponding countermeasures related to encryption algorithm security,key management,and encryption-decryption performance.Finally,it analyzes the development trends and future prospects of data encryption and decryption technology.This article provides a systematic understanding of data encryption and decryption techniques,which has good reference value for software designers.展开更多
Black wings of butterfly Ornithoptera goliath and infrared-band radiative cooling function of Rapala dioetas butterfly wings are associated with black pigment(e.g.,melanin)and unique hierarchical micro/nanostructures,...Black wings of butterfly Ornithoptera goliath and infrared-band radiative cooling function of Rapala dioetas butterfly wings are associated with black pigment(e.g.,melanin)and unique hierarchical micro/nanostructures,greatly stimulating biomimetic fabrication of functional photonic structures but mainly targeted to one prototype.Targeted at two-prototype integrated biomimetic fabrication from fully compositional/structural/functional aspects,femtosecond(fs)laser subtractive/additive-integrated hierarchical micro/nano-manufacturing technique is proposed in this work.This technique can one-step transfer refractory metals(e.g.,W,Mo,Nb,Ta)into black non-stoichiometric oxide nanomaterials with abundant oxygen vacancies and simultaneously enable the realization of in situ quasi-controllable micro/nanoscale hierarchical aggregation and assembly,all displaying black color but with tunable infrared emission.Adjusting the scan interval for biomimetic manufacturing can tailor the structural oxidation degree,the emission in the long-wave infrared(LWIR)band while keeping the blackness of hierarchical aggregates,and the confined height between the covering quartz plate and the ablated sample.The blackening efficiency of this technique can reach∼11.25 cm^(2)·min^(−1),opening opportunities for high-throughput optical/thermal applications.Selectively patterned Chinese characters,Arabic numbers,and English letters are easily fabricable,which are intrinsically invisible-infrared dual-band encrypted but decryptable via static/dynamic environment stimuli(e.g.,sample heating/cooling,introducing external hot/cold sources including human hands).The self-evolution from‘orderless’structuring to‘ordered’functionalization is validated for the proposed fs laser subtractive/additive-integrated biomimetic manufacturing,specifically from the synthesis of diverse black nanomaterials and the seemingly disordered micro/nano-aggregates to the ordered optical/thermal regulation capacities for a delicate modulation of information encryption and decryption,unveiling a new concept for future exploration and extension.展开更多
This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by inform...This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by information entropy analysis it is concluded that the security of this algorithm is higher compared with the original image;And a new image encryption and decryption algorithm based on the combination of two-stage Logistic mapping and <i>M</i> sequence is proposed. This new algorithm is very sensitive to keys;the key space is large and its security is higher than two-stage Logistic mapping of image encryption and decryption technology.展开更多
A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built...A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built-in security measures, even though it can effectively handle and store enormous datasets using the Hadoop Distributed File System (HDFS). The increasing number of data breaches emphasizes how urgently creative encryption techniques are needed in cloud-based big data settings. This paper presents Adaptive Attribute-Based Honey Encryption (AABHE), a state-of-the-art technique that combines honey encryption with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to provide improved data security. Even if intercepted, AABHE makes sure that sensitive data cannot be accessed by unauthorized parties. With a focus on protecting huge files in HDFS, the suggested approach achieves 98% security robustness and 95% encryption efficiency, outperforming other encryption methods including Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Key-Policy Attribute-Based Encryption (KB-ABE), and Advanced Encryption Standard combined with Attribute-Based Encryption (AES+ABE). By fixing Hadoop’s security flaws, AABHE fortifies its protections against data breaches and enhances Hadoop’s dependability as a platform for processing and storing massive amounts of data.展开更多
Constructing an information storage or communication system, where countless pieces of information canbe hidden like a canvas and revealed on demand throughspecific stimuli or decoding rules, is significant. In the pr...Constructing an information storage or communication system, where countless pieces of information canbe hidden like a canvas and revealed on demand throughspecific stimuli or decoding rules, is significant. In the presentstudy, we developed a hydrogel canvas that leverages noncovalentinteractions to induce phase separation in the polymer matrix, creating various “paintings”, including custommessages, using different chemical inks. Our strategy focuseson designing small molecule inks, with varying affinities withthe hydrogel and specific responsiveness to stimuli, to achievemultiple changes such as color shifts, fluorescence emission,and dynamic optical image evolution. This skips the typicaldesign approaches, such as incorporating responsive fluorophoresinto polymers for color emission through grafting orcopolymerization, and thus avoids the complex processes involved in modifying and synthesizing functional polymers,along with the uncertainties in material properties that theseprocesses bring.展开更多
With the development of big data and cloud computing technology,more and more users choose to store data on cloud servers,which brings much convenience to their management and use of data,and also the risk of data lea...With the development of big data and cloud computing technology,more and more users choose to store data on cloud servers,which brings much convenience to their management and use of data,and also the risk of data leakage.A common method to prevent data leakage is to encrypt the data before uploading it,but the traditional encryption method is often not conducive to data sharing and querying.In this paper,a new kind of Attribute-Based Encryption(ABE)scheme,which is called the Sub-String Searchable ABE(SSS-ABE)scheme,is proposed for the sharing and querying of the encrypted data.In the SSS-ABE scheme,the data owner encrypts the data under an access structure,and only the data user who satisfies the access structure can query and decrypt it.The data user can make a substring query on the whole ciphertext without setting keywords in advance.In addition,the outsourcing method is also introduced to reduce the local computation of the decryption process so that the outsourcing SSS-ABE scheme can be applied to IoT devices.展开更多
In modern society,information is becoming increasingly interconnected through networks,and the rapid development of information technology has caused people to pay more attention to the encryption and the protection o...In modern society,information is becoming increasingly interconnected through networks,and the rapid development of information technology has caused people to pay more attention to the encryption and the protection of information.Image encryption technology is a key technology for ensuring the security performance of images.We extracted single channel RGB component images from a color image using MATLAB programs,encrypted and decrypted the color images by randomly disrupting rows,columns and regions of the image.Combined with histograms and the visual judgments of encryption images,it is shown that the information of the original image cannot be obtained from the encryption image easily.The results show that the color-image encryptions with the algorithm we used have good effect and fast operation speed.Thus this algorithm has certain practical value.展开更多
This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels o...This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.展开更多
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti...This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.展开更多
B.Libert and J.Quisquater proposed an identity(ID)-based threshold decryption scheme. This paper found flaw in their security reduction and presented two methods to prove this scheme is resist against chosen-plaintext...B.Libert and J.Quisquater proposed an identity(ID)-based threshold decryption scheme. This paper found flaw in their security reduction and presented two methods to prove this scheme is resist against chosen-plaintext attack(CPA), based on the weaker model of security known as selective ID-based threshold CPA and the common model known as ID-based threshold CPA respectively.展开更多
Information security has emerged as a key problem in encryption because of the rapid evolution of the internet and networks.Thus,the progress of image encryption techniques is becoming an increasingly serious issue an...Information security has emerged as a key problem in encryption because of the rapid evolution of the internet and networks.Thus,the progress of image encryption techniques is becoming an increasingly serious issue and considerable problem.Small space of the key,encryption-based low confidentiality,low key sensitivity,and easily exploitable existing image encryption techniques integrating chaotic system and DNA computing are purposing the main problems to propose a new encryption technique in this study.In our proposed scheme,a three-dimensional Chen’s map and a one-dimensional Logistic map are employed to construct a double-layer image encryption scheme.In the confusion stage,different scrambling operations related to the original plain image pixels are designed using Chen’s map.A stream pixel scrambling operation related to the plain image is constructed.Then,a block scrambling-based image encryption-related stream pixel scrambled image is designed.In the diffusion stage,two rounds of pixel diffusion are generated related to the confusing image for intra-image diffusion.Chen’s map,logistic map,and DNA computing are employed to construct diffusion operations.A reverse complementary rule is applied to obtain a new form of DNA.A Chen’s map is used to produce a pseudorandom DNA sequence,and then another DNA form is constructed from a reverse pseudorandom DNA sequence.Finally,the XOR operation is performed multiple times to obtain the encrypted image.According to the simulation of experiments and security analysis,this approach extends the key space,has great sensitivity,and is able to withstand various typical attacks.An adequate encryption effect is achieved by the proposed algorithm,which can simultaneously decrease the correlation between adjacent pixels by making it near zero,also the information entropy is increased.The number of pixels changing rate(NPCR)and the unified average change intensity(UACI)both are very near to optimal values.展开更多
Any linear transform matrix can be used to easily calculate a consistent form, and a plurality of conversion can be easily connected together by matrix multiplication. When performing file transfers, you can encrypt f...Any linear transform matrix can be used to easily calculate a consistent form, and a plurality of conversion can be easily connected together by matrix multiplication. When performing file transfers, you can encrypt files matrix transformation. Article presents a matrix-based electronic document encryption and decryption algorithm, which relies on a special class of matrices combinatorial problems, the method to improve the security of electronic document system is feasible and effective, and finally give the source code and programming software.展开更多
基于人眼视觉感知特性,提出了一种新型的边缘检测和XOR编码相结合的图像自适应隐写算法。通过设计基于灰狼优化(grey wolf optimization,GWO)算法的边缘检测,根据秘密信息的大小自适应地调整边缘检测阈值,利用粒子群优化(particle swarm...基于人眼视觉感知特性,提出了一种新型的边缘检测和XOR编码相结合的图像自适应隐写算法。通过设计基于灰狼优化(grey wolf optimization,GWO)算法的边缘检测,根据秘密信息的大小自适应地调整边缘检测阈值,利用粒子群优化(particle swarm optimization,PSO)算法优化边缘和非边缘像素的嵌入位数,结合XOR编码实现对混沌加密后的秘密信息的嵌入。实验结果表明,该隐写算法比现有文献算法具有更大的隐写容量,能较好地保持载密图像的不可感知性,并已通过像素差值直方图(pixel difference histogram,PDH)安全性分析。展开更多
Data security plays a vital role in the current scenario due to the advanced and sophisticated data access techniques. Present development in data access is always a threat to data that are stored in electronic device...Data security plays a vital role in the current scenario due to the advanced and sophisticated data access techniques. Present development in data access is always a threat to data that are stored in electronic devices. Among all the forms of data, image is an important aspect that still needs methodologies to be stored securely. This work focuses on a novel technique to secure images using inter block difference and advanced encryption standard (AES). The AES algorithm is chosen for encryption since there is no prevalent attack that is successful in analyzing it. Instead of encrypting the entire image, only a part of the image is encrypted. The proposed work is found to reduce the encryption overhead in a significant way and at the same time preserves the safety of the image. It is also observed that the decryption is done in an efficient and time preserving manner.展开更多
The substitution table (S-Box) of Advanced Encryption Standard (AES) and its properties are key elements in cryptanalysis ciphering. We aim here to propose a straightforward method for the non-linear transformation of...The substitution table (S-Box) of Advanced Encryption Standard (AES) and its properties are key elements in cryptanalysis ciphering. We aim here to propose a straightforward method for the non-linear transformation of AES S-Box construction. The method reduces the steps needed to compute the multiplicative inverse, and computes the matrices multiplication used in this transformation, without a need to use the characteristic matrix, and the result is a modern method constructing the S-Box.展开更多
A memristive Hopfield neural network(MHNN)with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network(HNN)with a special activation gradient.The MHNN is simulated and d...A memristive Hopfield neural network(MHNN)with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network(HNN)with a special activation gradient.The MHNN is simulated and dynamically analyzed,and implemented on FPGA.Then,a new pseudo-random number generator(PRNG)based on MHNN is proposed.The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator,which effectively ensures the randomness of PRNG.The experiments in this paper comply with the IEEE 754-1985 high precision32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7 Z020 CLG400-2 FPGA chip and the Verilog-HDL hardware programming language.The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis,proving its randomness and high performance.Finally,an image encryption system based on PRNG is proposed and implemented on FPGA,which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things(Io T).展开更多
The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article propose...The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).展开更多
Dear Editor,This letter deals with the distributed recursive set-membership filtering(DRSMF)issue for state-saturated systems under encryption-decryption mechanism.To guarantee the data security,the encryption-decrypt...Dear Editor,This letter deals with the distributed recursive set-membership filtering(DRSMF)issue for state-saturated systems under encryption-decryption mechanism.To guarantee the data security,the encryption-decryption mechanism is considered in the signal transmission process.Specifically,a novel DRSMF scheme is developed such that,for both state saturation and encryption-decryption mechanism,the filtering error(FE)is limited to the ellipsoid domain.Then,the filtering error constraint matrix(FECM)is computed and a desirable filter gain is derived by minimizing the FECM.Besides,the bound-edness evaluation of the FECM is provided.展开更多
文摘With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role in multiple fields such as communication security,data storage,and data recovery.This article explores the fundamental principles and interrelationships of data encryption and decryption,examines the strengths,weaknesses,and applicability of symmetric,asymmetric,and hybrid encryption algorithms,and introduces key application scenarios for data encryption and decryption technology.It examines the challenges and corresponding countermeasures related to encryption algorithm security,key management,and encryption-decryption performance.Finally,it analyzes the development trends and future prospects of data encryption and decryption technology.This article provides a systematic understanding of data encryption and decryption techniques,which has good reference value for software designers.
基金financially supported by Shanghai Pujiang Program 23PJ1406500.
文摘Black wings of butterfly Ornithoptera goliath and infrared-band radiative cooling function of Rapala dioetas butterfly wings are associated with black pigment(e.g.,melanin)and unique hierarchical micro/nanostructures,greatly stimulating biomimetic fabrication of functional photonic structures but mainly targeted to one prototype.Targeted at two-prototype integrated biomimetic fabrication from fully compositional/structural/functional aspects,femtosecond(fs)laser subtractive/additive-integrated hierarchical micro/nano-manufacturing technique is proposed in this work.This technique can one-step transfer refractory metals(e.g.,W,Mo,Nb,Ta)into black non-stoichiometric oxide nanomaterials with abundant oxygen vacancies and simultaneously enable the realization of in situ quasi-controllable micro/nanoscale hierarchical aggregation and assembly,all displaying black color but with tunable infrared emission.Adjusting the scan interval for biomimetic manufacturing can tailor the structural oxidation degree,the emission in the long-wave infrared(LWIR)band while keeping the blackness of hierarchical aggregates,and the confined height between the covering quartz plate and the ablated sample.The blackening efficiency of this technique can reach∼11.25 cm^(2)·min^(−1),opening opportunities for high-throughput optical/thermal applications.Selectively patterned Chinese characters,Arabic numbers,and English letters are easily fabricable,which are intrinsically invisible-infrared dual-band encrypted but decryptable via static/dynamic environment stimuli(e.g.,sample heating/cooling,introducing external hot/cold sources including human hands).The self-evolution from‘orderless’structuring to‘ordered’functionalization is validated for the proposed fs laser subtractive/additive-integrated biomimetic manufacturing,specifically from the synthesis of diverse black nanomaterials and the seemingly disordered micro/nano-aggregates to the ordered optical/thermal regulation capacities for a delicate modulation of information encryption and decryption,unveiling a new concept for future exploration and extension.
文摘This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by information entropy analysis it is concluded that the security of this algorithm is higher compared with the original image;And a new image encryption and decryption algorithm based on the combination of two-stage Logistic mapping and <i>M</i> sequence is proposed. This new algorithm is very sensitive to keys;the key space is large and its security is higher than two-stage Logistic mapping of image encryption and decryption technology.
基金funded by Princess Nourah bint Abdulrahman UniversityResearchers Supporting Project number (PNURSP2024R408), Princess Nourah bint AbdulrahmanUniversity, Riyadh, Saudi Arabia.
文摘A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built-in security measures, even though it can effectively handle and store enormous datasets using the Hadoop Distributed File System (HDFS). The increasing number of data breaches emphasizes how urgently creative encryption techniques are needed in cloud-based big data settings. This paper presents Adaptive Attribute-Based Honey Encryption (AABHE), a state-of-the-art technique that combines honey encryption with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to provide improved data security. Even if intercepted, AABHE makes sure that sensitive data cannot be accessed by unauthorized parties. With a focus on protecting huge files in HDFS, the suggested approach achieves 98% security robustness and 95% encryption efficiency, outperforming other encryption methods including Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Key-Policy Attribute-Based Encryption (KB-ABE), and Advanced Encryption Standard combined with Attribute-Based Encryption (AES+ABE). By fixing Hadoop’s security flaws, AABHE fortifies its protections against data breaches and enhances Hadoop’s dependability as a platform for processing and storing massive amounts of data.
基金financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC)le Fonds de recherche du Quebec: Nature et technologies (FRQNT)+1 种基金The Centre Québécois sur les Matériaux Fonctionnels (CQMF)FRQNT and the China Scholarship Council (CSC) for awarding scholarships。
文摘Constructing an information storage or communication system, where countless pieces of information canbe hidden like a canvas and revealed on demand throughspecific stimuli or decoding rules, is significant. In the presentstudy, we developed a hydrogel canvas that leverages noncovalentinteractions to induce phase separation in the polymer matrix, creating various “paintings”, including custommessages, using different chemical inks. Our strategy focuseson designing small molecule inks, with varying affinities withthe hydrogel and specific responsiveness to stimuli, to achievemultiple changes such as color shifts, fluorescence emission,and dynamic optical image evolution. This skips the typicaldesign approaches, such as incorporating responsive fluorophoresinto polymers for color emission through grafting orcopolymerization, and thus avoids the complex processes involved in modifying and synthesizing functional polymers,along with the uncertainties in material properties that theseprocesses bring.
基金This work is supported by the National Natural Science Foundation of China(No.62071280,No.61602287)the Major Scientific and Technological Innovation Project of Shandong Province(No.2020CXGC010115)the Guangxi Key Laboratory of Cryptography and Information Security(GCIS201901).
文摘With the development of big data and cloud computing technology,more and more users choose to store data on cloud servers,which brings much convenience to their management and use of data,and also the risk of data leakage.A common method to prevent data leakage is to encrypt the data before uploading it,but the traditional encryption method is often not conducive to data sharing and querying.In this paper,a new kind of Attribute-Based Encryption(ABE)scheme,which is called the Sub-String Searchable ABE(SSS-ABE)scheme,is proposed for the sharing and querying of the encrypted data.In the SSS-ABE scheme,the data owner encrypts the data under an access structure,and only the data user who satisfies the access structure can query and decrypt it.The data user can make a substring query on the whole ciphertext without setting keywords in advance.In addition,the outsourcing method is also introduced to reduce the local computation of the decryption process so that the outsourcing SSS-ABE scheme can be applied to IoT devices.
基金National Natural Science Foundation of China(No.11865013)Horizontal Project of Shangrao Normal University,China(No.K8000219T)+1 种基金Industrial Science and Technology Project in Shangrao of Jiangxi Province,China(No.17A005)Doctoral Scientific Research Foundation of Shangrao Normal University,China(No.6000108)。
文摘In modern society,information is becoming increasingly interconnected through networks,and the rapid development of information technology has caused people to pay more attention to the encryption and the protection of information.Image encryption technology is a key technology for ensuring the security performance of images.We extracted single channel RGB component images from a color image using MATLAB programs,encrypted and decrypted the color images by randomly disrupting rows,columns and regions of the image.Combined with histograms and the visual judgments of encryption images,it is shown that the information of the original image cannot be obtained from the encryption image easily.The results show that the color-image encryptions with the algorithm we used have good effect and fast operation speed.Thus this algorithm has certain practical value.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61001099 and 10971120)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200444)
文摘This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No.ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No.2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No.KJ2020A0301)。
文摘This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
文摘B.Libert and J.Quisquater proposed an identity(ID)-based threshold decryption scheme. This paper found flaw in their security reduction and presented two methods to prove this scheme is resist against chosen-plaintext attack(CPA), based on the weaker model of security known as selective ID-based threshold CPA and the common model known as ID-based threshold CPA respectively.
基金Deanship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number:IFP22UQU4400257DSR031.
文摘Information security has emerged as a key problem in encryption because of the rapid evolution of the internet and networks.Thus,the progress of image encryption techniques is becoming an increasingly serious issue and considerable problem.Small space of the key,encryption-based low confidentiality,low key sensitivity,and easily exploitable existing image encryption techniques integrating chaotic system and DNA computing are purposing the main problems to propose a new encryption technique in this study.In our proposed scheme,a three-dimensional Chen’s map and a one-dimensional Logistic map are employed to construct a double-layer image encryption scheme.In the confusion stage,different scrambling operations related to the original plain image pixels are designed using Chen’s map.A stream pixel scrambling operation related to the plain image is constructed.Then,a block scrambling-based image encryption-related stream pixel scrambled image is designed.In the diffusion stage,two rounds of pixel diffusion are generated related to the confusing image for intra-image diffusion.Chen’s map,logistic map,and DNA computing are employed to construct diffusion operations.A reverse complementary rule is applied to obtain a new form of DNA.A Chen’s map is used to produce a pseudorandom DNA sequence,and then another DNA form is constructed from a reverse pseudorandom DNA sequence.Finally,the XOR operation is performed multiple times to obtain the encrypted image.According to the simulation of experiments and security analysis,this approach extends the key space,has great sensitivity,and is able to withstand various typical attacks.An adequate encryption effect is achieved by the proposed algorithm,which can simultaneously decrease the correlation between adjacent pixels by making it near zero,also the information entropy is increased.The number of pixels changing rate(NPCR)and the unified average change intensity(UACI)both are very near to optimal values.
文摘Any linear transform matrix can be used to easily calculate a consistent form, and a plurality of conversion can be easily connected together by matrix multiplication. When performing file transfers, you can encrypt files matrix transformation. Article presents a matrix-based electronic document encryption and decryption algorithm, which relies on a special class of matrices combinatorial problems, the method to improve the security of electronic document system is feasible and effective, and finally give the source code and programming software.
文摘Data security plays a vital role in the current scenario due to the advanced and sophisticated data access techniques. Present development in data access is always a threat to data that are stored in electronic devices. Among all the forms of data, image is an important aspect that still needs methodologies to be stored securely. This work focuses on a novel technique to secure images using inter block difference and advanced encryption standard (AES). The AES algorithm is chosen for encryption since there is no prevalent attack that is successful in analyzing it. Instead of encrypting the entire image, only a part of the image is encrypted. The proposed work is found to reduce the encryption overhead in a significant way and at the same time preserves the safety of the image. It is also observed that the decryption is done in an efficient and time preserving manner.
文摘The substitution table (S-Box) of Advanced Encryption Standard (AES) and its properties are key elements in cryptanalysis ciphering. We aim here to propose a straightforward method for the non-linear transformation of AES S-Box construction. The method reduces the steps needed to compute the multiplicative inverse, and computes the matrices multiplication used in this transformation, without a need to use the characteristic matrix, and the result is a modern method constructing the S-Box.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department(Grant No.21B0345)the Postgraduate Scientific Research Innovation Project of Changsha University of Science and Technology(Grant Nos.CX2021SS69 and CX2021SS72)+3 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province,China(Grant No.CX20200884)the Natural Science Foundation of Hunan Province,China(Grant Nos.2019JJ50648,2020JJ4622,and 2020JJ4221)the National Natural Science Foundation of China(Grant No.62172058)the Special Funds for the Construction of Innovative Provinces of Hunan Province,China(Grant Nos.2020JK4046 and 2022SK2007)。
文摘A memristive Hopfield neural network(MHNN)with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network(HNN)with a special activation gradient.The MHNN is simulated and dynamically analyzed,and implemented on FPGA.Then,a new pseudo-random number generator(PRNG)based on MHNN is proposed.The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator,which effectively ensures the randomness of PRNG.The experiments in this paper comply with the IEEE 754-1985 high precision32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7 Z020 CLG400-2 FPGA chip and the Verilog-HDL hardware programming language.The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis,proving its randomness and high performance.Finally,an image encryption system based on PRNG is proposed and implemented on FPGA,which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things(Io T).
基金supported by the National Natural Science Foundation of China(Grant No.61973037)and(Grant No.61871414)Postdoctoral Fundation of China(Grant No.2022M720419)。
文摘The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).
基金supported by the National Natural Science Foundation of China(12471416,12171124,12301567)the Heilongjiang Provincial Natural Science Foundation of China(PL2024F015)+2 种基金the Postdoctoral Science Foundation of Heilongjiang Province of China(LBH-Z22199)the Fundamental Research Foun-dation for Universities of Heilongjiang Province of China(2022-KYYWF-0141)the Alexander von Humboldt Foundation of Germany.
文摘Dear Editor,This letter deals with the distributed recursive set-membership filtering(DRSMF)issue for state-saturated systems under encryption-decryption mechanism.To guarantee the data security,the encryption-decryption mechanism is considered in the signal transmission process.Specifically,a novel DRSMF scheme is developed such that,for both state saturation and encryption-decryption mechanism,the filtering error(FE)is limited to the ellipsoid domain.Then,the filtering error constraint matrix(FECM)is computed and a desirable filter gain is derived by minimizing the FECM.Besides,the bound-edness evaluation of the FECM is provided.