期刊文献+
共找到514篇文章
< 1 2 26 >
每页显示 20 50 100
XGBoost Algorithm under Differential Privacy Protection
1
作者 Yuanmin Shi Siran Yin +1 位作者 Ze Chen Leiming Yan 《Journal of Information Hiding and Privacy Protection》 2021年第1期9-16,共8页
Privacy protection is a hot research topic in information security field.An improved XGBoost algorithm is proposed to protect the privacy in classification tasks.By combining with differential privacy protection,the X... Privacy protection is a hot research topic in information security field.An improved XGBoost algorithm is proposed to protect the privacy in classification tasks.By combining with differential privacy protection,the XGBoost can improve the classification accuracy while protecting privacy information.When using CART regression tree to build a single decision tree,noise is added according to Laplace mechanism.Compared with random forest algorithm,this algorithm can reduce computation cost and prevent overfitting to a certain extent.The experimental results show that the proposed algorithm is more effective than other traditional algorithms while protecting the privacy information in training data. 展开更多
关键词 Differential privacy privacy protection xgboost algorithm CART regression tree
在线阅读 下载PDF
Long tunnel group driving fatigue detection model based on XGBoost algorithm
2
作者 Huazhi Yuan Kun Zhao +3 位作者 Ying Yan Li Wan Zhending Tian Xinqiang Chen 《Journal of Traffic and Transportation Engineering(English Edition)》 2025年第1期167-179,共13页
Driving fatigue is one of the important causes of accidents in tunnel(group)sections.In this paper,in order to effectively identify the driving fatigue of tunnel(group)drivers,an eye tracker and other instruments were... Driving fatigue is one of the important causes of accidents in tunnel(group)sections.In this paper,in order to effectively identify the driving fatigue of tunnel(group)drivers,an eye tracker and other instruments were used to conduct real vehicle tests on long tunnel(group)expressways and thus obtain the eye movement,driving duration,and Karolinska sleepiness scale(KSS)data of 30 drivers.The impacts of the tunnel and non-tunnel sections on drivers were compared,and the relationship between blink indexes,such as the blink frequency,blink duration,mean value of blink duration,driving duration,and driving fatigue,was studied.A paired t-test and a Spearman correlation test were performed to select the indexes that can effectively characterize the tunnel driving fatigue.A driving fatigue detection model was then developed based on the XGBoost algorithm.The obtained results show that the blink frequency,total blink duration,and mean value of blink duration gradually increase with the deepening of driving fatigue,and the mean value of blink duration is the most sensitive in the tunnel environment.In addition,a significant correlation exists between the driving duration index and driving fatigue,which can provide a reference for improving the tunnel safety.Using the mean value of blink duration and driving duration as the characteristic indexes,the accuracy of the driving fatigue detection model based on the XGBoost algorithm reaches 98%.The cumulative and continuous tunnel proportion effectively estimates the driving fatigue state in a long tunnel(group)environment. 展开更多
关键词 Traffic safety Tunnel group Driving fatigue detection Eye movement data Driving duration xgboost algorithm
原文传递
基于PSO-XGBoost的爆破振动峰值速度预测研究 被引量:1
3
作者 任高峰 邱浪 +4 位作者 徐琛 李吉民 胡英国 朱瑜劼 胡伟 《金属矿山》 北大核心 2025年第4期256-265,共10页
为实现爆破振动峰值速度的精准预测,减少爆破振动的危害,基于某爆破工程实测数据,通过基于决策树的特征重要性分析,选取了爆心距、炸药爆速、孔距、堵塞长度、孔深、单段药量6个变量作为输入特征,利用粒子群优化算法(PSO)对XGBoost模型... 为实现爆破振动峰值速度的精准预测,减少爆破振动的危害,基于某爆破工程实测数据,通过基于决策树的特征重要性分析,选取了爆心距、炸药爆速、孔距、堵塞长度、孔深、单段药量6个变量作为输入特征,利用粒子群优化算法(PSO)对XGBoost模型的决策树数目、决策树最大深度、学习率3个参数进行寻优,构建了PSO-XGBoost爆破振动峰值速度预测模型。通过对实例进行预测,得到预测结果的MSE、RMSE、R^(2)的值分别为1.44、1.16、0.91;通过与BPNN、AdaBoost、GBDT、RF、SVR模型的预测结果进行对比,PSO-XGBoost模型的预测性能最佳,预测结果最优。为了进一步推广应用预测成果,开发设计了一套爆破振动峰值速度预测系统。研究成果可为类似爆破工程振动预测提供一定的理论参考和实践指导。 展开更多
关键词 爆破振动 爆破振动峰值速度 粒子群优化算法 xgboost算法 预测模型
在线阅读 下载PDF
基于XGBoost算法的走滑断裂内部特征带的精细识别 被引量:2
4
作者 赵军 汪峻宇 +3 位作者 赖强 文晓峰 邬光辉 焦世祥 《地质科技通报》 北大核心 2025年第2期182-192,共11页
受制于走滑断裂内部强烈的非均质性、储集类型多样及流体分布复杂的影响,走滑断裂内部裂缝带、破碎带和溶蚀带之间的测井响应复杂多变,为有效利用成像及常规测井资料识别走滑断裂内部3特征带造成了困难。引入XGboost算法建立模型,以提... 受制于走滑断裂内部强烈的非均质性、储集类型多样及流体分布复杂的影响,走滑断裂内部裂缝带、破碎带和溶蚀带之间的测井响应复杂多变,为有效利用成像及常规测井资料识别走滑断裂内部3特征带造成了困难。引入XGboost算法建立模型,以提高对走滑断裂内部3特征带的识别精度。分析了走滑断裂内部3特征带的测井响应特征,优选敏感测井曲线构建基于均值及方差的特征向量空间集,采用极端梯度提升算法,建立了走滑断裂溶蚀带、破碎带和裂缝带的XGBoost回归预测模型,并通过多分类评价指标对XGBoost模型的关键参数进行调优,提高了走滑断裂内部特征带的识别精度。利用构建的XGBoost模型对研究区走滑断裂内部特征带进行了识别,其中总样本数234个,识别正确样本208个,识别正确率达88.89%;预测结果表明在走滑断裂内部特征带中,裂缝带分布范围最广,破碎带其次,溶蚀带最窄,这与实际走滑断裂内部特征带的分布范围相符。基于XGBoost算法的走滑断裂内部特征带识别模型能够有效地识别裂缝带、破碎带和溶蚀带,从而有助于对走滑断裂内部尺度更小的溶蚀孔洞及裂缝储集空间的分布进行更为有效的分析,对走滑断裂内部结构的精细刻画有一定借鉴意义。 展开更多
关键词 走滑断裂 xgboost算法 碳酸盐岩 测井评价 特征带识别 四川盆地 高石梯-磨溪地区
在线阅读 下载PDF
基于XGBoost⁃SHAP方法的建设项目碳排放空间异质性分析 被引量:1
5
作者 王元庆 李佳玥 +1 位作者 刘备 王芳 《环境科学》 北大核心 2025年第7期4090-4100,共11页
为使公路建设碳减排更有效,聚焦高速公路建设过程中的碳排放空间异质性,基于广东省A高速公路项目40个分段样本筛选出的构造物类型、桥隧比、设计坡度、路线长度、填方量、挖方量和水泥消耗量这7个碳排放影响关键指标,训练与验证了XGBoos... 为使公路建设碳减排更有效,聚焦高速公路建设过程中的碳排放空间异质性,基于广东省A高速公路项目40个分段样本筛选出的构造物类型、桥隧比、设计坡度、路线长度、填方量、挖方量和水泥消耗量这7个碳排放影响关键指标,训练与验证了XGBoost碳排放预测模型,构建了解释这40个路段碳排放空间异质性的SHAP算法,研究了路段特征对碳排放的影响、总特征贡献和特征交互效应.结果表明,水泥消耗量的增加对碳排放的非线性增长贡献最大,路线长度、挖方量和桥隧比对碳排放的贡献度也较为显著;冷热点分析发现坡度高于2.5%且地形复杂的路段碳排放趋高,存在聚集效应;XGBoost-SHAP模型较地理加权回归模型GWR能更清晰解释碳排放的空间分布特征及其影响因素,在捕捉关键碳源和理解碳排放空间分布特征方面表现更佳.基于以上发现,提出了公路建养碳减排的针对性综合策略,以推动公路建设的可持续发展. 展开更多
关键词 碳排放 空间异质性 xgboost算法 SHAP算法 可解释性
原文传递
基于XGBoost算法的砂砾岩储层测井岩性识别
6
作者 王英伟 赵军 +3 位作者 覃建华 张景 汪峻宇 冯月丽 《西南石油大学学报(自然科学版)》 北大核心 2025年第5期39-48,共10页
在砂砾岩储层的岩性识别中,岩石粒度的影响使测井曲线响应复杂,呈现低维线性不可分、高维可分的特点,传统的低维建模方法难以有效应对高维数据建模需求。随着人工智能技术的发展,基于测井数据和计算机算法的岩性识别方法逐渐成为研究趋... 在砂砾岩储层的岩性识别中,岩石粒度的影响使测井曲线响应复杂,呈现低维线性不可分、高维可分的特点,传统的低维建模方法难以有效应对高维数据建模需求。随着人工智能技术的发展,基于测井数据和计算机算法的岩性识别方法逐渐成为研究趋势。应用优化版的梯度提升决策树算法XGBoost以提升M区块砂砾岩储层的岩性识别精度。虽然XGBoost已在岩性识别中广泛应用,但不同区块的岩性差异使其参数需进行区域适配优化。以百口泉组储层为研究对象,分析其岩性特征及测井响应特征,并选择GR、AC、DEN和RT测井曲线作为特征变量。对468组样本按4:1的比例划分训练集和测试集,并通过交叉验证优化XGBoost的关键参数,确定了最佳的迭代次数和学习率等参数。实验结果显示,XGBoost算法在本区块的岩性识别准确率达91.05%,相较于C4.5决策树算法,在识别精度和效率上均有显著提升。研究结果验证了XGBoost在砂砾岩储层岩性识别中的适用性和有效性,为类似储层的勘探开发提供了技术参考。 展开更多
关键词 xgboost算法 砂砾岩储层 岩性识别 测井评价 百口泉组储层 玛湖凹陷
在线阅读 下载PDF
基于CLSRIME-XGBOOST的带式输送机托辊故障诊断方法
7
作者 江帆 程舒曼 +4 位作者 朱真才 周公博 李强 刘全辉 宋鸿炎 《振动.测试与诊断》 北大核心 2025年第4期666-673,840,共9页
针对声音信号分析在诊断带式输送机托辊故障中的高维特征存在信息冗余、计算量大和诊断效果不理想等问题,笔者构建了声音信号特征精简策略,基于Circle混沌映射、Levy飞行策略和正弦因子改进了霜冰优化算法(rime optimization algorithm... 针对声音信号分析在诊断带式输送机托辊故障中的高维特征存在信息冗余、计算量大和诊断效果不理想等问题,笔者构建了声音信号特征精简策略,基于Circle混沌映射、Levy飞行策略和正弦因子改进了霜冰优化算法(rime optimization algorithm,简称RIME),记作CLSRIME。再结合极致梯度提升模型(extreme gradient boosting,简称XGBOOST),构建了CLSRIME-XGBOOST带式输送机托辊轴承故障诊断方法。首先,利用梅尔倒谱系数(Melscale frequency cepstral coefficient,简称MFCC)融合方法提取信号关键特征,并通过t-分布领域嵌入算法(t-distributed stochastic neighbor embedding,简称tSNE)进行降维,构建了基于MFCC和tSNE的精简特征提取策略;其次,针对RIME存在初始种群分布不均、霜冰粒子搜索能力弱、收敛速度较慢的问题,引入Circle混沌映射、Levy飞行策略和正弦因子,设计了CLSRIME;最后,利用CLSRIME优化XGBOOST中树的深度、迭代次数及学习率等参数,构建了基于CLSRIME-XGBOOST的诊断模型。结果表明,所提方法能够精简表征托辊轴承故障状态的特性信息,改善了RIME的优化性能,提高了传统XGBOOST诊断模型的准确率,为带式输送机托辊故障诊断提供了新思路。 展开更多
关键词 带式输送机 改进RIME算法 MFCC xgboost 故障诊断
在线阅读 下载PDF
融合多种策略SSA算法优化XGBoost的水厂混凝投药预测模型 被引量:1
8
作者 王文成 杨金瑞 《制造业自动化》 2025年第1期136-143,共8页
为了提高水厂混凝剂投加量的预测精度,提出一种改进麻雀搜索算法(ISSA)优化极端梯度提升树(XGBoost)的混凝投药预测模型。首先将Sobol序列、双样本学习策略和柯西-高斯变异策略与麻雀搜索算法结合;然后利用改进的麻雀搜索算法对XGBoost... 为了提高水厂混凝剂投加量的预测精度,提出一种改进麻雀搜索算法(ISSA)优化极端梯度提升树(XGBoost)的混凝投药预测模型。首先将Sobol序列、双样本学习策略和柯西-高斯变异策略与麻雀搜索算法结合;然后利用改进的麻雀搜索算法对XGBoost模型中主要的超参数进行优化,建立混凝投药预测模型。该模型以源水流量、浊度、温度、pH、耗氧量为输入,混凝剂投加量为输出。最后利用桂林某水厂的历史生产数据,通过20次重复实验对该模型进行训练和测试。结果显示,ISSA优化XGBoost模型的平均均方根误差(RMSE)达0.4895 mg/L,平均决定系数(R~2)达0.893,验证了该模型具有良好的预测精度和稳定性。 展开更多
关键词 混凝投药 xgboost 麻雀搜索算法 Sobol序列 双样本学习 变异策略
在线阅读 下载PDF
基于LSTM-XGBoost的国产民用飞机燃油流量预测
9
作者 杨军利 李立坤 +2 位作者 钱宇 唐盛香 杨沛达 《航空工程进展》 2025年第5期207-214,共8页
神经网络模型已广泛应用于燃油消耗预测,但使用单一模型的预测精度还有待提高。选取影响燃油流量的9个参数进行灰色关联度分析,获取关联度大于0.7的8个参数作为燃油流量的影响参数;对国产民用飞机的快速存取记录器(QAR)数据进行小波变... 神经网络模型已广泛应用于燃油消耗预测,但使用单一模型的预测精度还有待提高。选取影响燃油流量的9个参数进行灰色关联度分析,获取关联度大于0.7的8个参数作为燃油流量的影响参数;对国产民用飞机的快速存取记录器(QAR)数据进行小波变换去噪,得到研究所需要的飞行数据;建立长短期记忆网络(LSTM)预测模型和极端梯度提升(XGBoost)预测模型,使用误差倒数法将两种模型组合起来对飞行数据进行预测,并利用国产民用飞机在某航线的飞行数据进行算例分析。结果表明:利用LSTM-XGBoost组合模型预测的准确率为96.53%,高于单一LSTM模型预测的90.21%、XGBoost模型预测的88.47%和PSO-BP模型的91.23%,预测精度较高。 展开更多
关键词 快速存取记录器数据 长短期记忆网络 极端梯度提升算法 燃油流量 组合预测
在线阅读 下载PDF
基于XGBoost与改进D-S证据理论的油浸式变压器故障诊断方法
10
作者 陈辉 白雪婷 +3 位作者 吴一庆 江友华 徐非非 叶尚兴 《仪表技术》 2025年第4期72-77,81,共7页
针对油浸式变压器故障诊断中存在的油中溶解气体数据量不足及传统D-S证据理论故障诊断精度低的问题,提出了一种基于XGBoost与改进D-S证据理论的变压器故障诊断方法。通过单一气体特征衍生构建包含溶解气体含量及其比值的双结构特征集,... 针对油浸式变压器故障诊断中存在的油中溶解气体数据量不足及传统D-S证据理论故障诊断精度低的问题,提出了一种基于XGBoost与改进D-S证据理论的变压器故障诊断方法。通过单一气体特征衍生构建包含溶解气体含量及其比值的双结构特征集,并利用XGBoost算法筛选出最优故障特征子集;基于K-近邻算法计算特征模型值与待识别样本间贴近度,生成基本概率分配(BPA)函数;通过信念散度距离实现证据再分配,并采用D-S证据理论合成规则进行多源证据融合,以提高诊断准确性。实验结果表明,所提方法的故障诊断准确率达到90.21%,相较于IEC三比值法、灰色关联分析、CART、WOA-BP、GA-SVM分别提高了11.91%、10.91%、9.81%、8.71%和3.21%,显著提升了变压器故障诊断的可靠性。 展开更多
关键词 油浸式变压器 故障诊断 xgboost算法 D-S证据理论 K-近邻算法
原文传递
基于XGBoost算法的夏热冬冷地区办公建筑围护结构的负荷预测
11
作者 曹双华 郭虹雨 龚婉婷 《能源研究与信息》 2025年第2期90-97,共8页
空调负荷预测有助于建筑能源侧的管理与优化,在节能方面具有可观的潜力。为了使预测模型可以快速预测夏热冬冷地区不同建筑的逐时冷负荷,将建筑冷负荷解耦,仅考虑围护结构的负荷预测。首先,建立基于XGBoost算法的基准建筑围护结构逐时... 空调负荷预测有助于建筑能源侧的管理与优化,在节能方面具有可观的潜力。为了使预测模型可以快速预测夏热冬冷地区不同建筑的逐时冷负荷,将建筑冷负荷解耦,仅考虑围护结构的负荷预测。首先,建立基于XGBoost算法的基准建筑围护结构逐时冷负荷预测模型,对4种不同特征组合的预测结果进行分析比较,结果表明特征组合D的预测效果最优;然后,基于基准建筑对其他类型建筑的围护结构负荷进行差值修正,得到适用于更多办公建筑的通用预测模型。以上海与杭州的测试建筑为例,利用XGBoost算法预测得到的围护结构逐时冷负荷与利用EnergyPlus软件得到的模拟结果吻合,说明该预测模型具有良好的泛化性,能够精确、有效地预测不同建筑围护结构的冷负荷。 展开更多
关键词 负荷预测 机器学习 EnergyPlus软件 xgboost算法
在线阅读 下载PDF
基于贝叶斯优化XGBoost的燃煤电厂负荷预测
12
作者 汪繁荣 刘宇航 胡雨千 《电工技术》 2025年第1期33-37,共5页
在众多的燃煤电厂耗能系统中,制粉系统是最主要的耗能系统之一,想要达到燃煤电厂发电时节约能源并降低消耗的预期目标,最重要的方式便是高质量、高效能地运转制粉系统。由于负荷的多样性与波动性显著增加,对预测模型提出了更高的泛化能... 在众多的燃煤电厂耗能系统中,制粉系统是最主要的耗能系统之一,想要达到燃煤电厂发电时节约能源并降低消耗的预期目标,最重要的方式便是高质量、高效能地运转制粉系统。由于负荷的多样性与波动性显著增加,对预测模型提出了更高的泛化能力和精度要求,因此急需一种预测精度高、稳定性突出的预测模型。为此提出了一种基于贝叶斯优化的XGBoost预测模型,以当前大型燃煤电厂发电机组普遍采用的中速磨冷一次风机正压直吹式制粉系统为研究对象,通过特征重要程度得分再排序和特征相关性分析降低了特征维度,使输入特征变量和输出制粉单耗具有较好的映射关系。模型能很好地挖掘输入与输出之间的映射关系,预测精度达到99.4%,在实际负荷预测中效果较好,可为节能降耗的方案制定提供参考。 展开更多
关键词 制粉系统 xgboost算法 负荷预测 特征分析 贝叶斯优化
在线阅读 下载PDF
基于XGBoost算法的页岩岩相测井预测方法 被引量:3
13
作者 闫佳飞 李胜利 +2 位作者 魏泽德 吴忠宝 陈建阳 《古地理学报》 北大核心 2025年第3期763-776,共14页
页岩岩相的识别与预测对于分析确定页岩油气甜点层段非常重要。在缺乏岩心信息进行单井岩相研究时,测井数据扮演着十分重要的角色,而基于XGBoost算法可以充分挖掘多维测井数据所揭示的页岩岩相信息,从而达到预测单井页岩岩相的目的。本... 页岩岩相的识别与预测对于分析确定页岩油气甜点层段非常重要。在缺乏岩心信息进行单井岩相研究时,测井数据扮演着十分重要的角色,而基于XGBoost算法可以充分挖掘多维测井数据所揭示的页岩岩相信息,从而达到预测单井页岩岩相的目的。本研究应用具有监督学习算法的XGBoost机器学习方法,利用常规测井数据作为变量数据集,建立了可预测页岩岩相类型的计算模型。首先建立适合具体研究区的页岩岩相划分标准,该标准应能体现研究区页岩岩相的辨识差异性,再统计不同矿物含量,确定不同岩相的具体矿物含量和TOC含量界限。在建立计算模型时,相关变量可能会提供相似的信息,导致模型过于依赖这些特征,需注意去除相似信息。XGBoost算法在参数优选方面,其网格搜索具有全面性,在网格搜索过程中应该进行多次优选,不断缩小搜索范围以求取最优值。以松辽盆地松南地区赞字井区块为例,采用矿物组分含量、沉积构造及TOC含量建立页岩岩相划分标准,青山口组可划分出5类主要页岩;在应用XGBoost算法进行变量优选时,对于具有较高相关性的深侧向电阻率(LLD)和浅侧向电阻率(LLS)曲线,保留一条即可,结果表明模型准确率可提高4%左右;经过变量选择及参数调优后,最终模型预测岩相的准确率可达90.03%。 展开更多
关键词 页岩岩相预测 xgboost算法 变量选择 参数调优 测井信息 青山口组 松辽盆地
在线阅读 下载PDF
HF和波动参数辅助的优化XGBoost室内定位方法
14
作者 刘高辉 凌凤智 《网络安全与数据治理》 2025年第9期51-58,65,共9页
针对复杂室内环境下接收信号强度测量数据中包含噪声使其呈现波动性导致定位精度低的问题,提出一种基于混合滤波(HF)、波动参数辅助的优化极限梯度提升(XGBoost)室内定位方法。首先采用HF的方法对数据子集进行优化,降低噪声的影响,得到... 针对复杂室内环境下接收信号强度测量数据中包含噪声使其呈现波动性导致定位精度低的问题,提出一种基于混合滤波(HF)、波动参数辅助的优化极限梯度提升(XGBoost)室内定位方法。首先采用HF的方法对数据子集进行优化,降低噪声的影响,得到初始数据库;另外,考虑到波动不能完全消除,引入能够反映数据变化程度的波动参数;其次,针对XGBoost算法性能易受初始参数的影响,采用粒子群(PSO)算法对其进行寻优,并将波动参数与优化后的数据作为算法输入训练生成定位模型;最后,将目标点处信息输入到模型中完成位置估计,同时将该点数据保存到数据库中完成更新。实验结果表明,与传统算法相比,所提算法具有良好的定位效果,在1 m、2 m和3 m范围内,定位准确率分别提升9.2%、14.1%和18.45%。 展开更多
关键词 室内定位 混合滤波 波动参数 粒子群算法 xgboost
在线阅读 下载PDF
基于Sentinel-2A影像和XGBoost模型的滇中高原地区土壤有机碳含量反演研究 被引量:1
15
作者 严正飞 杨明龙 +3 位作者 唐秀娟 夏永华 杨赈 李万涛 《河南农业科学》 北大核心 2025年第2期145-153,共9页
土壤有机碳(Soil organic carbon,SOC)在保持土壤肥力、促进植物生长和农业可持续发展等方面发挥着至关重要的作用,因此,高效精准地获取SOC含量非常重要。利用Sentinel-2A多光谱遥感影像数据并结合实测SOC含量、Sentinel-1后向散射系数... 土壤有机碳(Soil organic carbon,SOC)在保持土壤肥力、促进植物生长和农业可持续发展等方面发挥着至关重要的作用,因此,高效精准地获取SOC含量非常重要。利用Sentinel-2A多光谱遥感影像数据并结合实测SOC含量、Sentinel-1后向散射系数、植被指数和地形因子数据(高程、坡度、坡向),分别使用随机森林(RF)、深度森林(DF)和XGBoost算法模型,对姚安灌区的SOC含量进行反演研究。结果表明,从不同组合的辅助变量来看,结合不同变量因子(植被指数因子、地形因子、后向散射系数因子等)有助于提高SOC含量的预测精度,尤其加入地形因子后,RF、DF和XGBoost 3种模型的R^(2)分别提升0.0523、0.0398和0.0689。从不同预测模型测算结果分析,XGBoost和DF算法模型都可以有效地进行耕地SOC含量的精准预测,其中XGBoost算法模型与M3变量组合(Sentinel-2A影像的12个波段数据、植被指数数据、Sentinel-1后向散射系数数据以及地形因子数据的组合)结合的预测能力最高[决定系数(R^(2))=0.8106,均方根误差(RMSE)=1.8132],其次是DF算法模型(R^(2)=0.7512,RMSE=1.9255),而RF算法模型的预测能力相对较低(R^(2)=0.6245,RMSE=2.5031)。 展开更多
关键词 土壤有机碳 Sentinel-2A 遥感反演 机器学习 xgboost算法 滇中高原
在线阅读 下载PDF
基于GWO-XGBoost算法的流体识别——以陇东油田CX区长2储层为例 被引量:1
16
作者 陈家鑫 赵军龙 +3 位作者 崔文洁 金利睿 孙婧 张雨辰 《地球物理学进展》 北大核心 2025年第3期1115-1124,共10页
为解决低孔低渗储层流体识别困难及识别效率不高等问题,本文以陇东油田CX区长2储层为研究对象,综合文献调研以及试油试采资料,由于采用常规方法对研究区储层流体识别,效果较差,所以利用GWO-XGBoost模型在研究区储层展开流体识别工作.首... 为解决低孔低渗储层流体识别困难及识别效率不高等问题,本文以陇东油田CX区长2储层为研究对象,综合文献调研以及试油试采资料,由于采用常规方法对研究区储层流体识别,效果较差,所以利用GWO-XGBoost模型在研究区储层展开流体识别工作.首先通过GWO算法对XGBoost模型中提升器超参数(学习率、弱学习器数量)进行寻优,其次将寻优后的超参数输入到XGBoost模型中进行流体识别预测,最终输出储层流体识别结果.利用GWO-XGBoost模型对鄂尔多斯盆地陇东油田长2储层进行流体识别工作,选取XGBoost模型、RF神经网络、LSTM模型以及SVM模型与GWO-XGBoost模型进行对比研究,实验表明,GWO-XGBoost模型在研究区流体识别准确率达97.5%,准确度均高于其他四种模型,验证了该模型在研究区对于致密储层流体识别工作具有可靠性,并为低孔低渗储层流体识别提供了参考意义. 展开更多
关键词 xgboost GWO算法 储层流体识别 长2储层 陇东油田
原文传递
基于BO-XGBoost算法的气凝胶混凝土力学和保温性能预测方法
17
作者 熊峰 陈腾盛 +2 位作者 邓楚兵 李云飞 曾一 《工程科学与技术》 北大核心 2025年第5期1-13,共13页
气凝胶混凝土是制备保温承重一体化墙板的优质材料,其抗压强度和导热系数是重要的研究参数。为了获取最优的抗压强度和导热系数,需要在实验室多次重复进行配合比设计及性能测定,需要大量的人力和时间。采用公式分析方法或统计方法可获... 气凝胶混凝土是制备保温承重一体化墙板的优质材料,其抗压强度和导热系数是重要的研究参数。为了获取最优的抗压强度和导热系数,需要在实验室多次重复进行配合比设计及性能测定,需要大量的人力和时间。采用公式分析方法或统计方法可获得最佳性能,但因为气凝胶混凝土的抗压强度和导热系数与各影响因素存在高度的非线性关系,由此得到的经验公式精度低,对自身实验有很强的依赖性,无法推广和泛化。而利用机器学习方法可以有效地通过数据库建立输入与输出特征之间的映射关系。本文利用贝叶斯优化的极端梯度提升算法(BO-XGBoost)建立了一个气凝胶混凝土性能预测模型,并基于335组数据,进行模型训练与测试。为了验证采用带可解释特征作为输入特征的方案的有效性,采用两个模型分别预测抗压强度和导热系数的优势,设置两个对比方案进行性能比较。此外,为了分析BO-XGBoost模型在气凝胶混凝土性能预测上的优势,使用随机森林、人工神经网络等多个模型与之进行比较,并采用全新数据探究模型的泛化能力。结果表明,BO-XGBoost模型效果很好,抗压强度和导热系数预测模型的测试集的决定系数R2均在0.97以上,预测能力优于其他模型,且具有较好的泛化能力。此外,采用SHAP模型进行可解释分析,结果表明,影响气凝胶混凝土性能的最主要因素是气凝胶掺量和水胶比。 展开更多
关键词 气凝胶混凝土 性能预测 贝叶斯优化 xgboost算法 SHAP可解释分析
在线阅读 下载PDF
GA-XGBoost模型对路基压实质量的预测
18
作者 赖建平 赵辉 +1 位作者 王东升 冯怀平 《哈尔滨工业大学学报》 北大核心 2025年第7期33-41,共9页
为提升智能压实(intelligent compaction,IC)质量的实时检测与评价精度,提出一种基于GA-XGBoost模型的连续压实质量预测方法,以提高动态变形模量(E vd)的预测精度。模型以动态变形模量为目标,建立机器学习模型,主要采用决策树算法,构建X... 为提升智能压实(intelligent compaction,IC)质量的实时检测与评价精度,提出一种基于GA-XGBoost模型的连续压实质量预测方法,以提高动态变形模量(E vd)的预测精度。模型以动态变形模量为目标,建立机器学习模型,主要采用决策树算法,构建XGBoost模型对压实质量进行预测分析。通过引入遗传算法(genetic algorithm,GA)对模型超参数寻优,以提高模型的预测精度和可靠性。首先,通过现场工程试验,测量压路机碾压时振动加速度,分析加速度信号,计算信号统计量并采用快速傅里叶变换(FFT)得出谐波频率,初步建立各项特征因子与E vd之间的系统联系;其次,筛选各个时频域特征,进行相关性分析,选用相关性较高的特征来建立预测模型;最后,验证了GA-XGBoost预测模型可以较好的预测E vd。研究结果表明:遗传算法(GA)可以高效地确定XGBoost算法的超参数,且较单一的XGBoost模型表现出更优的收敛速度;通过优化特征因子,改变输入参数,提高了GA-XGBoost模型的预测精度,优化后均方误差为3.9%,相关系数为0.748;同时对比了传统CMV拟合E vd的方法,该机器学习模型可以大幅度提高预测精度。 展开更多
关键词 智能压实 机器学习 xgboost算法 遗传算法 动态变形模量 时域特征
在线阅读 下载PDF
基于XGBoost的电磁阀滤网缺陷检测系统设计
19
作者 潘源琦 郭斌 +2 位作者 汪伟国 潘飞文 陆艺 《现代电子技术》 北大核心 2025年第12期13-18,共6页
为弥补汽车电磁阀滤网表面缺陷自动化检测的空缺,并解决滤网表面缺陷检测准确率低、存在漏检现象等问题,设计一种基于改进XGBoost的电磁阀滤网表面缺陷检测系统,有效识别电磁阀滤网存在的破洞、松丝缺陷。该系统首先对滤网图像进行滤波... 为弥补汽车电磁阀滤网表面缺陷自动化检测的空缺,并解决滤网表面缺陷检测准确率低、存在漏检现象等问题,设计一种基于改进XGBoost的电磁阀滤网表面缺陷检测系统,有效识别电磁阀滤网存在的破洞、松丝缺陷。该系统首先对滤网图像进行滤波、增强,再对滤网区域及滤网塑料骨架区域进行定位,从而提取滤网织物区域;其次提取织物区域的灰度特征和纹理特征,采用基于随机森林的特征递减消除算法进行特征优选,构建XGBoost模型来实现对缺陷的识别与分类;最后采用两重多阶段的超参数寻优策略进行参数优化,提升模型效果。实验结果表明,所设计系统能够识别出滤网表面的缺陷及类型,并且相比传统机器学习检测方法,能够达到更高的准确率。 展开更多
关键词 电磁阀滤网 缺陷检测 xgboost算法 随机森林 特征优选 超参数寻优
在线阅读 下载PDF
基于GIS与XGBoost算法的山东省新石器时代考古遗址预测模型研究
20
作者 田洁 朱有晨 +3 位作者 李林芝 朱星 李文然 安雪莲 《北京师范大学学报(自然科学版)》 北大核心 2025年第3期394-404,共11页
构建考古遗址预测模型可以精准识别遗址的潜在空间范围,有助于对尚未发现的遗址进行前瞻性保护.本文以山东省为研究区域,收集了1916个新石器时代遗址(不含墓葬)作为研究样本,按照1∶1的比例随机提取1916个非遗址点作为负样本,并选取高... 构建考古遗址预测模型可以精准识别遗址的潜在空间范围,有助于对尚未发现的遗址进行前瞻性保护.本文以山东省为研究区域,收集了1916个新石器时代遗址(不含墓葬)作为研究样本,按照1∶1的比例随机提取1916个非遗址点作为负样本,并选取高程、坡度、坡向、剖面曲率、平面曲率、微地貌、坡位、濒水距离8个自然地理环境影响因子,构建考古遗址预测模型的指标体系.运用GIS空间分析方法和XGBoost算法,构建考古遗址预测模型.基于该模型进行了潜在遗址点的空间范围预测,同时分析了影响因子的重要性.研究结果表明:1)运用XGBoost算法构建的考古遗址预测模型可获取较高的精度,本研究的AUC测试值为0.85;2)用最佳样本训练后的模型,将结果划分为低、中、高3种等级,并绘制出考古遗址概率空间分布图,得出遗址主要分布在平原地区;3)XGBoost算法对影响因子重要性分析表明,坡位、微地貌、高程是影响山东省新石器时代遗址空间分布格局的主要自然地理因子.研究发现,XGBoost算法具有较好的稳定性和预测能力,构建的模型为考古遗址预测提供了新的研究方法,并为考古发掘提供了重要技术支撑,揭示了新石器时代遗址与地理环境的关系. 展开更多
关键词 xgboost算法 GIS 考古遗址预测模型 新石器时代 山东省
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部