The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key feature...The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key features and accurately predict fault types due to the complexity of meteorological factors and their nonlinear relationships. In response to these challenges, we propose the Feature-Enhanced XGBoost power grid fault prediction method (FE-XGBoost). Specifically, we first combine the gradient boosting decision tree and recursive feature elimination method to extract essential features from meteorological data. Then, we incorporate a piecewise linear chaotic map to enhance the optimization accuracy of the sparrow search algorithm. Finally, we construct an XGBoost-based model for the classification prediction of power grid meteorological faults and optimize the hyperparameters such as the optimal tree depth, optimal learning rate, and optimal number of iterations using an enhanced sparrow search algorithm. Experimental results demonstrate that our method outperforms the baseline models in predicting power grid faults accurately.展开更多
文摘针对历史负荷特征提取困难所导致的短期电力负荷预测精度不高的问题,提出了基于堆叠泛化集成思想的逻辑斯谛灰狼优化-极限梯度提升-轻量级梯度提升机-门控循环单元(logistic grey wolf optimizer-extreme gradient boosting-light gradient boosting machine-gated recurrent unit, LGWO-XGBoost-LightGBM-GRU)的短期电力负荷预测算法。该算法首先使用逻辑斯谛映射对灰狼优化(grey wolf optimizer, GWO)算法进行改进得到LGWO算法,接着使用LGWO算法分别对XGBoost、LightGBM、GRU算法进行参数寻优,然后使用XGBoost、LightGBM算法对数据的不同特征进行初步提炼,最后将提炼的特征合并到历史负荷数据集中作为输入,并使用GRU进行最终的负荷预测,得到预测结果。以某工业园区的负荷预测为例进行验证,结果表明,该算法与最小二乘支持向量机(least squares support vector machines, LS-SVM)算法相比,均方根误差降低了68.85%,平均绝对误差降低了69.57%,平均绝对百分比误差降低了69.97%,决定系数提高了8.42%。该算法提高了短期电力负荷预测的精度。
基金supported by the Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.(Research on Power Meteorology Digitalization Application for Future Climate Scenarios and New Energy Operation Risks,J2023076).
文摘The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key features and accurately predict fault types due to the complexity of meteorological factors and their nonlinear relationships. In response to these challenges, we propose the Feature-Enhanced XGBoost power grid fault prediction method (FE-XGBoost). Specifically, we first combine the gradient boosting decision tree and recursive feature elimination method to extract essential features from meteorological data. Then, we incorporate a piecewise linear chaotic map to enhance the optimization accuracy of the sparrow search algorithm. Finally, we construct an XGBoost-based model for the classification prediction of power grid meteorological faults and optimize the hyperparameters such as the optimal tree depth, optimal learning rate, and optimal number of iterations using an enhanced sparrow search algorithm. Experimental results demonstrate that our method outperforms the baseline models in predicting power grid faults accurately.