Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric ma...Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.展开更多
Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analy...Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.展开更多
The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki...The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.展开更多
Lithological observations and mineralogical analyses on pyroxene and hornblende megacrysts and pyroxene and hornblende cumulates in xenoliths in the Mesozoic plutons of the Tongling region, Anhui Province, provide evi...Lithological observations and mineralogical analyses on pyroxene and hornblende megacrysts and pyroxene and hornblende cumulates in xenoliths in the Mesozoic plutons of the Tongling region, Anhui Province, provide evidence for the magmatic underplating of mantle-derived alkali-olivine basalt at circa 140 Ma. The pyroxene and hornblende megacrysts and cumulates were formed through the AFC process at depths ranging from 27 to 35 km.展开更多
Our understanding of solid earth is from the surface, but the depth we can reach is very limited. So, most of the interpretations of geological processes and mechanisms extrapolated from all kinds of the surface pheno...Our understanding of solid earth is from the surface, but the depth we can reach is very limited. So, most of the interpretations of geological processes and mechanisms extrapolated from all kinds of the surface phenomena is greatly uncertain. Recently many researchers concentrate their efforts to the geological and geophysical studying of the deep processes of the solid earth. The International Lithosphere Project (ILP) started in 1981 now is also a frontier field. One of the concentrations of this project is the 3\|D structure, tectonic evolution and the dynamic models of lithosphere\|asthenosphere system (Li Xiaobo etc., 1997). The studying of the igneous rocks and bearing deep\|seated xenoliths, as one of the effective methods probing the structure and evolution of the lithosphere, plays a very important role in these aspects (Deng Jinfu et al., 1996; Lu Fengxiang, 1997).Commonly, magmas come to the surface in great speed and the covering lithosphere should be relatively thinner. For example, the thickness of the lithosphere in East China is about 60~80km in the era when the volcanoes erupted (Deng Jinfu et al. 1994). Recently, many deep\|seated xenoliths were found in several localities of southwest Tianshan (Han Baofu et al., 1998). But in Qinghai—Xizang plateau, “So far no any xenoliths of mantle rocks as peridotites, lherzolites and harzburgites and high pressure granulites were found (Deng Wanming et al., 1997)”.. But in the fieldwork of 1998 we find some deep\|seated xenoliths in Cenozoic basaltic rocks in Kangxiwa region, West Kunlun, China. This work is a part of the project “XinJiang DuShanZi—QuanShuiGou transect” managed by academician Xiao Xuchang.展开更多
The Precambrian lower crust rocks at the southeastern margin of the North China Craton (NCC) are mainly exposed as granulite xenoliths hosted by Mesozoic dioritic porphyry and metamorphic terrains in the Xuzhou-Suzh...The Precambrian lower crust rocks at the southeastern margin of the North China Craton (NCC) are mainly exposed as granulite xenoliths hosted by Mesozoic dioritic porphyry and metamorphic terrains in the Xuzhou-Suzhou area. Garnet amphiholites and garnet granulites are two kinds of typical lower-crustal xenoliths and were selected to reconstruct different stages of the metamorphic process. In this study, in view of multistage metamorphic evolution and reworking, phase equilibria modeling was used for the first time to better constrain peak P-T conditions of the xenoliths. Some porphyroblastic garnets have a weak zonal structure in composition with homogeneous cores and were surrounded by thin rims with an increase in XMg and a decrease in X Ca (or X Mg)- Clinopyroxene contain varying amounts of Na2O and Al2O3 as well as amphibole of TiO2, while plagioclases are different in calcium contents. Peak metamorphic P-T conditions are calculated by the smallest garnet x(g) (Fe2+/(Fe2++Mg)) contours and the smallest plagioclase ca(pl) (Ca/(Ca+Na)) contours in NCFMASHTO (Na2O-CaO-FeO-MgO-Al2O3-SiO2- H20-TiO2-Fe2O3) system, which are consistent with those estimated by conventional geothermobarometry. The new results show that the peak and decompressional P-T conditions for the rocks are 850-900 ℃/ 1.4-1.6 GPa and 820-850 ℃/0.9-1.3 GPa, respectively, suggestive of high and middle-low pressure granulite-facies metamorphism. Combined with previous zircon U-Pb dating and conventional geothermobarometry data, it is indicated that the xenoliths experienced a clockwise P-T-t evolution with nearisothermal deeompressional process, suggestive of the Paleoproterozoic subduction-collision setting. In this regard, the studied region together with Jiao-Liao-Ji belt is further documented to make up a Paleopro- terozoic collisional orogen in the eastern block of the NCC.展开更多
Cenozoic potassic mafic volcanism (kamafugite magamtism) in West Qinling, Gansu province of China is a important section of Cenozoic volcanic belt of Qingzang (Tibet) plateau and adjacent area. The kamafugite magma sh...Cenozoic potassic mafic volcanism (kamafugite magamtism) in West Qinling, Gansu province of China is a important section of Cenozoic volcanic belt of Qingzang (Tibet) plateau and adjacent area. The kamafugite magma show near\|primary magma characteristics. Strong incompatible elements concentrations in the volcanic rocks infer the kamafugite magmas may be origined from a enrichment mantle sources earlier.Four groups of deep\|seated xenoliths were collected from a kamafugite lava in West Qinling, Gansu province, China: (1)spinel Iherzolite and garnet Iherzolite; (2) harzburgite; (3) dunite and (4) clinopyroxenite. All suite of peridotite xenoliths are Cr\|diopside series. The main textures of peridotite xenoliths are granoblastic, porphyroclastic and granular, but the textures of clinopyroxenite are mainly poikilitic. The textural characteristics, mineral chemical variations and mineral geothermometric data show that the mantle source region of the Cenozoic kamafugite magam are very complex and undertook partial melting and enrichment associated with alkaline metasomatism by fluid and carbonatite melts. Geothermometry indicates the equilibration p and T conditions of the spinel lherzolite and garnet lherzolite are 970℃, 18 9GPa and 1219℃,27 61GPa corresponding to depth of 62km and 92km representatively. We suggest, combining with geophysical data, the spinel lherzolite formed at the top of upper mantle, the garnet lherzolite represent the base of lithosphere or the top of asthenosphere, but the clinopyroxenite is formed by cumulation in shallower magma reservoir. Kamafugite magmas formed within the stability field of garnet lherzolite by partial melting, the partial melting degree is only about 1%~2%. There is a superheating condition in Cenozoic mantle of West Qinling, which may be related to strong uplift of Qingzang (Tibet) plateau since cenozoic and extrusion east forward of asthenosphere beneath the Qingzang (Tibet) plateau.展开更多
The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuo...The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba (汉诺坝), located on the north edge of the intra-North China orogenic belt, are discussed based on the in-situ LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths combined with detailed petrography and geochemistry studies. The Hannuoba lithospheric mantle was formed by different partial meltings of the primitive mantle. Most of the samples reflect the partial melting degree of lower than 5% with a few samples of 15%-20%. Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic. This was probably caused by the asthenospheric mantle replacing the aged craton mantle through erosion, intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/ fluid metasomatism as magnified by the trace elements of the clinopyroxencs from the Hannuoba lithospherJc mantle.展开更多
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths (garnet peridotite,eclogite and clinopyroxene-phlogopite rocks) and for megacryst,macrocryst and groundmass flakes from th...We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths (garnet peridotite,eclogite and clinopyroxene-phlogopite rocks) and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle (SCLM) and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation (Phl1) occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation (Phl2) occurs as rims and outer zones that surround the Phl1 grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phl1,within the garnet peridotite and clinopyroxeneephlogopitexenoliths,is characterised bylow Ti and Cr contents (TiO2<1 wt.%,Cr2O3<1 wt.% andMg#=100×Mg/(MgtFe)>92) typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr2O3 despite a wider range of TiO2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations (TiO2 > 2 wt.%,Cr2O3 > 1 wt.% and Mg#=100 × Mg/(Mg + Fe)< 92) and compositionally overlaps with phlogopite from polymict breccia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phl1 grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.展开更多
This paper presents whole-rock Hf isotopic data for a suite of eclogite and garnet clinopyroxenite xenoliths hosted in the Early Cretaceous dioritic intrusions from the Xuzhou-Suzhou area along the southeastern margin...This paper presents whole-rock Hf isotopic data for a suite of eclogite and garnet clinopyroxenite xenoliths hosted in the Early Cretaceous dioritic intrusions from the Xuzhou-Suzhou area along the southeastern margin of the Eastern Block of the North China Craton(NCC).Six of the eight studied xenolith samples plot significantly above the terrestrial Hf-Nd isotopic array and haveεHf(0)value up to+60.All the samples define a well correlated 147 Sm/144 Nd-143 Nd/144 Nd age of 2081 Ma,which is considered to record the granulite-facies metamorphism.In contrast,the Lu-Hf isotope system faithfully records the protolith information.The mineralogical assemblage,especially garnet and/or zircon(rutile to some extent)mainly controlled the decoupling of Hf-Nd isotope.The metamorphic modification on protolith characteristics and the differences in element mobility during metamorphism may also reinforce the observed decoupling between the Sm-Nd and Lu-Hf isotope systems;i.e.,the absence of the correlations inεNd-εHf and also 87 Sr/86 Sr-143 Nd/144 Nd diagram.The Lu/Hf isochron age of 2424 Ma is similar to the zircon age peak of the studied xenoliths and the dominant age of NCC basement,indicating that the igneous protolith has an affinity to the Archean basement of the NCC.Furthermore,the positiveεHf(t)values at 2500 Ma indicate a crustal growth event of 2500 Ma in the NCC.展开更多
Uliramafie xenoliths provide an important constraint on the composition,strueture and evolution of the lithosphere mantle beneath eastern China. Most of the xenoliths entrained by the Cenzoic basalts have de pleted Sr...Uliramafie xenoliths provide an important constraint on the composition,strueture and evolution of the lithosphere mantle beneath eastern China. Most of the xenoliths entrained by the Cenzoic basalts have de pleted Sr and Nd isotopie composition. Interestingly evidences have been found for old ehriehed lithosphere mantle beneath thick Arehaean and post-Arehaean erust (>35 km ) and for relatively homogeneous and depleted lithosphere mantle bencath thin erust (< 35 km ). Furthermore the chemieal composition of the lithosphere mantle is overall fertile regardless of the age of the overlying erust. The spatial variability in ehemieal and Sr and Nd isotopie eompositions of the ultramafie xenoliths in relation to the lithospherie ages and geometry implies a mixture strueture of the lithosphere mantle beheath easiern China. which consists of recently aecreted asthenospherie diapirs and old modified remnants. Isotopie eomposition of the Cenozoie basalts show obvious similarities with ocein island basalt (OIH ). We argue that enriehed lithosphere mantle delamineted during Mesozoic-Cenozoie tectonie-thermal events was generally involved in the Cenozoie basaltic voleanism.展开更多
Ultramafic hypoxenoliths found in the alkali-rich porphyry in the Liuhe Village, Heqing, Yunnan, China, are of great significance in understanding the origin and evolution of the porphyry. This paper discusses the min...Ultramafic hypoxenoliths found in the alkali-rich porphyry in the Liuhe Village, Heqing, Yunnan, China, are of great significance in understanding the origin and evolution of the porphyry. This paper discusses the mineralogical features of the hypoxenoliths. It shows that the xenoliths are characterized by the upper mantle rocks modified to certain extent by the enriched mantle fluid metasomatism in the mantle environment, with the enriched mantle property of low-degree partial melting. This constitutes the important mineralogical evidence for the petrogenesis and mineralization of alkali-rich porphyry.展开更多
Spinel-bearing lherzolite xenoliths from the Hossere Garba (1272 m.a.s.l) volcano on the Adamawa Plateau, is located in Likok village, at about 35 km to WSW of Ngaoundere. These xenoliths (~11 cm size) have been sampl...Spinel-bearing lherzolite xenoliths from the Hossere Garba (1272 m.a.s.l) volcano on the Adamawa Plateau, is located in Likok village, at about 35 km to WSW of Ngaoundere. These xenoliths (~11 cm size) have been sampled into the host basaltic lava flows from the NE flank of the Hossere Garba volcano. These xenoliths characterized by porphyroclastic texture consisted of olivine (~55 vol.%), orthopyroxene (~19 vol.%) and clinopyroxene (~21 vol.%) crystals. Spinel crystals (~5 vol.%) are red brown and interstitial between the crystals of olivine and pyroxenes. CaO contents are low (<0.08 wt%) in olivine and similar to those estimated (CaO: 0.05 - 0.1 wt%) for the mantle origin. The values of AlVI/AlIV ratio range between 1.1 and 1.3 for the Cr-diopside crystals from Hossere Garba xenoliths. The constant value of the volumes V(Cell) and V(M1) for clinopyroxene compositions, indicates the similar pressures. Hossere Garba represents a residual sequence issued from partial melting of a mantle source. Similar compositions have been recorded in minerals of ultramafic xenoliths from other ultramafic xenoliths domains of the Cameroon Line and the Adamawa Plateau.展开更多
Clinopyroxene-enriched upper mantle xenoliths classified as wehrlites are common(~20% of all xenoliths) in the central part of the Nograd-G(o| ")m(o|")r Volcanic Field(NGVF),situated in the northern margin o...Clinopyroxene-enriched upper mantle xenoliths classified as wehrlites are common(~20% of all xenoliths) in the central part of the Nograd-G(o| ")m(o|")r Volcanic Field(NGVF),situated in the northern margin of the Pannonian Basin in northern Hungary and southern Slovakia.In this study,we thoroughly investigated 12 wehrlite xenoliths,two from each wehrlite-bearing occurrence,to determine the conditions of their formation.Specific textural features,including clinopyroxene-rich patches in an olivine-rich lithology,orthopyroxene remnants in the cores of newlyformed clinopyroxenes and vermicular spinel forms all suggest that wehrlites were formed as a result of intensive interaction between a metasomatic agent and the peridotite wall rock.Based on the major and trace element geochemistry of the rock-forming minerals,significant enrichment in basaltic(Fe,Mn,Ti) and high field strength elements(Nb,Ta,Hf,Zr) was observed,compared to compositions of common lherzolite xenoliths.The presence of orthopyroxene remnants and geochemical trends in rock-forming minerals suggest that the metasomatic process ceased before complete wehrlitization was achieved.The composition of the metasomatic agent is interpreted to be a mafic silicate melt,which was further confirmed by numerical modelling of trace elements using the plate model.The model results also show that the melt/rock ratio played a key role in the degree of petrographic and geochemical transformation.The lack of equilibrium and the conclusions drawn by using variable lherzolitic precursors in the model both suggest that wehrlitization was the last event that occurred shortly before xenolith entrainment in the host mafic melt.We suggest that the wehrlitization and the Plio-Pleistocene basaltic volcanism are related to the same magmatic event.展开更多
Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,cha...Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.展开更多
Mantle peridotite xenoliths in Jiaohe City,located near the northern part of the Tan-Lu fault,are key evidence for constraining the nature and evolution of the subcontinental lithospheric mantle(SCLM)of the NE China.G...Mantle peridotite xenoliths in Jiaohe City,located near the northern part of the Tan-Lu fault,are key evidence for constraining the nature and evolution of the subcontinental lithospheric mantle(SCLM)of the NE China.Geochemical characteristics of Jiaohe peridotite xenoliths have been well studied,whereas the microstructures and associated fabrics remain poorly known.We report here major element composition of the constituent minerals,P-T conditions,microstructure,lattice preferred orientations(LPOs)of a set of xenoliths having coarse-grained and granuloblastic to porphyroclastic textures.These xenoliths are characterized by forsterite content of 89-91 in olivine.Dislocation microstructures,in olivine crystals revealed by oxidation decoration technique,are characterized by free dislocation,dislocation walls,dislocation loops and subgrains.Microstructures and deformation mechanism maps indicate that dislocation creep is the dominant deformation mechanism of almost anhydrous olivine in the SCLM.In most samples,the observed LPOs of olivine are typical A-type fabric.Stresses measured in the xenoliths using several olivine piezometers are~2.7-8.5 MPa.The equilibration temperature conditions,calculated using several geo-thermometers,indicate the equilibrium temperature condition of peridotites in a range of 891 to 993℃.These results provide rheological constraint on the deformation of the SCLM in Jiaohe.Combined with the data for mantle xenoliths from adjacent regions,a heterogeneous evolution of the lithosphere deformation is inferred at the Jiaohe region.We propose that characteristics of the studied peridotite may be related to the Tan-Lu fault.展开更多
Mantle xenoliths(>150) and concentrates from late autolithic breccia and porphyritic kimberlite from the Sytykanskaya pipe of the Alakit field(Yakutia) were analyzed by EPMA and LAM ICP methods.In P-TX-f(O2) ...Mantle xenoliths(>150) and concentrates from late autolithic breccia and porphyritic kimberlite from the Sytykanskaya pipe of the Alakit field(Yakutia) were analyzed by EPMA and LAM ICP methods.In P-TX-f(O2) diagrams minerals from xenoliths show widest variations,the trends P-Fe#-CaO,f(O2)for minerals from porphyric kimberlites are more stepped than for xenocrysts from breccia.Ilmenite PTX points mark moving for protokimberlites from the lithosphere base(7.5 GPa) to pyroxenite lens(5-3.5 GPa) accompanied by Cr increase by AFC and creation of two trends P-Fe#OI10-12%and13-15%.The Opx-Gar-based mantle geotherm in Alakit field is close to 35 mW/m2 at 65 GPa and 600 C near Moho was determined.The oxidation state for the megacrystalline ilmenites is lower for the metasomatic associations due to reduction of protokimberlites on peridotites than for uncontaminated varieties at the lithosphere base.Highly inclined linear REE patterns with deep HFSE troughs for the parental melts of clinopyroxene and garnet xenocrysts from breccia were influenced by differentiated protokimberlite.Melts for metasomatic xenoliths reveal less inclined slopes without deep troughs in spider diagrams.Garnets reveal S-shaped REE patterns.The clinopyroxenes from graphite bearing Cr-websterites show inclined and inflected in Gd spectrums with LREE variations due to AFC differentiation.Melts for garnets display less inclined patterns and Ba-Sr troughs but enrichment in Nb-Ta-U.The40Ar/39Ar ages for micas from the Alakit mantle xenoliths for disseminated phlogopites reveal Proterozoic(1154 Ma) age of metasomatism in early Rodinia mantle.Veined glimmerites with richterite- like amphiboles mark1015 Ma plume event in Rodinia mantle.The600-550 Ma stage manifests final Rodinia break-up.The last 385 Ma metasomatism is protokimberlite-related.展开更多
Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite,Pimenta Bueno Kimberlitic Field,which is loca...Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite,Pimenta Bueno Kimberlitic Field,which is located on the southwestern border of the Amazonian Craton.We also present Sr-Nd isotopic data of garnet xenocrysts and whole-rocks from the Carolina kimberlite.Mantle xenoliths are mainly clinopyroxenites and garnetites.Some of the clinopyroxenites were classified as GPP–PP–PKP(garnet-phlogopite peridotite,phlogopite-peridotite,phlogopite-K-richterite peridotite)suites,and two clinopyroxenites(eclogites)and two garnetites are relicts of an ancient subducted slab.Temperature and pressure estimates yield 855–1102℃ and 3.6–7.0 GPa,respectively.Clinopyroxenes are enriched in light rare earth elements(LREE)(La_(N)/Yb_(N)=5–62;Ce_(N)/Sm_(N)=1–3;where N=primitive mantle normalized values),they have high Ca/Al ratios(10–410),low to medium Ti/Eu ratios(742–2840),and low Zr/Hf ratios(13–26),which suggest they were formed by metasomatic reactions with CO_(2)-rich silicate melts.Phlogopite with high TiO_(2)(>2.0 wt.%),Al_(2)O_(3)(>12.0 wt.%),and FeOt(5.0–13.0 wt.%)resemble those found in the groundmass of kimberlites,lamproites and lamprophyres.Conversely,phlogopite with low TiO_(2)(<1.0 wt.%)and lower Al_(2)O_(3)(<12.0 wt.%)are similar to those present in GPP-PP-PKP,and in MARID(mica-amphibole-rutile-ilmenite-diopside)and PIC(phlogopite-ilmenite-clinopyorxene)xenoliths.The GPP-PP-PKP suite of xenoliths,together with the clinopyroxene and phlogopite major and trace element signatures suggests that an intense proto-kimberlite melt metasomatism occurred in the deep cratonic lithosphere beneath the Amazonian Craton.The Sr-Nd isotopic ratios of pyrope xenocrysts(G3,G9 and G11)from the Carolina kimberlite are characterized by high ^(143)Nd/^(144)Nd(0.51287–0.51371)and eNd(+4.55 to+20.85)accompanied with enriched ^(87)Sr/^(86)Sr(0.70405–0.71098).These results suggest interaction with a proto-kimberlite melt compositionally similar with worldwide kimberlites.Based on Sr-Nd whole-rock compositions,the Carolina kimberlite has affinity with Group 1 kimberlites.The Sm-Nd isochron age calculated with selected eclogitic garnets yielded an age of 291.9±5.4 Ma(2σ),which represents the cooling age after the proto-kimberlite melt metasomatism.Therefore,we propose that the lithospheric mantle beneath the Amazonian Craton records the Paleozoic subduction with the attachment of an eclogitic slab into the cratonic mantle(garnetites and eclogites);with a later metasomatic event caused by proto-kimberlite melts shortly before the Carolina kimberlite erupted.展开更多
The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ...The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.展开更多
Petrological and mineralogical characteristics of gabbro xenoliths in Mesozoic basalts in Ningyuan-Daoxian region, Huan province show that they belong to different rock series. The basalt is similar to alkline basalt ...Petrological and mineralogical characteristics of gabbro xenoliths in Mesozoic basalts in Ningyuan-Daoxian region, Huan province show that they belong to different rock series. The basalt is similar to alkline basalt of an intracontinental rift ; while the gabbro xenolith shows that it is the differentiated outcrop of tholeiitic lava, similar to that of layer-shaped basic pluton. The gabbro xenolith represents an early intrusion of basic melt and the melting event is probably the earlier menifestation of lithosphere mibilization in Mesozoic in the South China.展开更多
基金supported by funds from the Ministry of Science and Technology of the People's Republic of China(No.2019YFA0708603)NSFC(Nos.41973050,42288201,41930215)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0202)。
文摘Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.
基金supported by the Korea Polar Research Institute project PE24050.
文摘Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.
文摘The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.
基金the NationalNatural Science Foundation of China(Grants 40272034, 40133020)the Ministry of Science and Technology of China(Grant 1999043206) the Korea Science and Engineering Foundation(Grant KOSEF-20005-131-03-02).
文摘Lithological observations and mineralogical analyses on pyroxene and hornblende megacrysts and pyroxene and hornblende cumulates in xenoliths in the Mesozoic plutons of the Tongling region, Anhui Province, provide evidence for the magmatic underplating of mantle-derived alkali-olivine basalt at circa 140 Ma. The pyroxene and hornblende megacrysts and cumulates were formed through the AFC process at depths ranging from 27 to 35 km.
文摘Our understanding of solid earth is from the surface, but the depth we can reach is very limited. So, most of the interpretations of geological processes and mechanisms extrapolated from all kinds of the surface phenomena is greatly uncertain. Recently many researchers concentrate their efforts to the geological and geophysical studying of the deep processes of the solid earth. The International Lithosphere Project (ILP) started in 1981 now is also a frontier field. One of the concentrations of this project is the 3\|D structure, tectonic evolution and the dynamic models of lithosphere\|asthenosphere system (Li Xiaobo etc., 1997). The studying of the igneous rocks and bearing deep\|seated xenoliths, as one of the effective methods probing the structure and evolution of the lithosphere, plays a very important role in these aspects (Deng Jinfu et al., 1996; Lu Fengxiang, 1997).Commonly, magmas come to the surface in great speed and the covering lithosphere should be relatively thinner. For example, the thickness of the lithosphere in East China is about 60~80km in the era when the volcanoes erupted (Deng Jinfu et al. 1994). Recently, many deep\|seated xenoliths were found in several localities of southwest Tianshan (Han Baofu et al., 1998). But in Qinghai—Xizang plateau, “So far no any xenoliths of mantle rocks as peridotites, lherzolites and harzburgites and high pressure granulites were found (Deng Wanming et al., 1997)”.. But in the fieldwork of 1998 we find some deep\|seated xenoliths in Cenozoic basaltic rocks in Kangxiwa region, West Kunlun, China. This work is a part of the project “XinJiang DuShanZi—QuanShuiGou transect” managed by academician Xiao Xuchang.
基金financially supported by the National Natural Science Foundation of China (No. 41773020)the National Basic Research Program of China (No. 2015CB856104)the PhD Foundation of the Ministry of Education of China (No. 20133402130008)
文摘The Precambrian lower crust rocks at the southeastern margin of the North China Craton (NCC) are mainly exposed as granulite xenoliths hosted by Mesozoic dioritic porphyry and metamorphic terrains in the Xuzhou-Suzhou area. Garnet amphiholites and garnet granulites are two kinds of typical lower-crustal xenoliths and were selected to reconstruct different stages of the metamorphic process. In this study, in view of multistage metamorphic evolution and reworking, phase equilibria modeling was used for the first time to better constrain peak P-T conditions of the xenoliths. Some porphyroblastic garnets have a weak zonal structure in composition with homogeneous cores and were surrounded by thin rims with an increase in XMg and a decrease in X Ca (or X Mg)- Clinopyroxene contain varying amounts of Na2O and Al2O3 as well as amphibole of TiO2, while plagioclases are different in calcium contents. Peak metamorphic P-T conditions are calculated by the smallest garnet x(g) (Fe2+/(Fe2++Mg)) contours and the smallest plagioclase ca(pl) (Ca/(Ca+Na)) contours in NCFMASHTO (Na2O-CaO-FeO-MgO-Al2O3-SiO2- H20-TiO2-Fe2O3) system, which are consistent with those estimated by conventional geothermobarometry. The new results show that the peak and decompressional P-T conditions for the rocks are 850-900 ℃/ 1.4-1.6 GPa and 820-850 ℃/0.9-1.3 GPa, respectively, suggestive of high and middle-low pressure granulite-facies metamorphism. Combined with previous zircon U-Pb dating and conventional geothermobarometry data, it is indicated that the xenoliths experienced a clockwise P-T-t evolution with nearisothermal deeompressional process, suggestive of the Paleoproterozoic subduction-collision setting. In this regard, the studied region together with Jiao-Liao-Ji belt is further documented to make up a Paleopro- terozoic collisional orogen in the eastern block of the NCC.
文摘Cenozoic potassic mafic volcanism (kamafugite magamtism) in West Qinling, Gansu province of China is a important section of Cenozoic volcanic belt of Qingzang (Tibet) plateau and adjacent area. The kamafugite magma show near\|primary magma characteristics. Strong incompatible elements concentrations in the volcanic rocks infer the kamafugite magmas may be origined from a enrichment mantle sources earlier.Four groups of deep\|seated xenoliths were collected from a kamafugite lava in West Qinling, Gansu province, China: (1)spinel Iherzolite and garnet Iherzolite; (2) harzburgite; (3) dunite and (4) clinopyroxenite. All suite of peridotite xenoliths are Cr\|diopside series. The main textures of peridotite xenoliths are granoblastic, porphyroclastic and granular, but the textures of clinopyroxenite are mainly poikilitic. The textural characteristics, mineral chemical variations and mineral geothermometric data show that the mantle source region of the Cenozoic kamafugite magam are very complex and undertook partial melting and enrichment associated with alkaline metasomatism by fluid and carbonatite melts. Geothermometry indicates the equilibration p and T conditions of the spinel lherzolite and garnet lherzolite are 970℃, 18 9GPa and 1219℃,27 61GPa corresponding to depth of 62km and 92km representatively. We suggest, combining with geophysical data, the spinel lherzolite formed at the top of upper mantle, the garnet lherzolite represent the base of lithosphere or the top of asthenosphere, but the clinopyroxenite is formed by cumulation in shallower magma reservoir. Kamafugite magmas formed within the stability field of garnet lherzolite by partial melting, the partial melting degree is only about 1%~2%. There is a superheating condition in Cenozoic mantle of West Qinling, which may be related to strong uplift of Qingzang (Tibet) plateau since cenozoic and extrusion east forward of asthenosphere beneath the Qingzang (Tibet) plateau.
基金This paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan )(CUGQNL0510)the National Natural Science Foundation of China(No .40425002) .
文摘The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba (汉诺坝), located on the north edge of the intra-North China orogenic belt, are discussed based on the in-situ LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths combined with detailed petrography and geochemistry studies. The Hannuoba lithospheric mantle was formed by different partial meltings of the primitive mantle. Most of the samples reflect the partial melting degree of lower than 5% with a few samples of 15%-20%. Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic. This was probably caused by the asthenospheric mantle replacing the aged craton mantle through erosion, intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/ fluid metasomatism as magnified by the trace elements of the clinopyroxencs from the Hannuoba lithospherJc mantle.
基金financially supported by the Program for Development MSU.N.Korotaeva (Lomonosov Moscow State University) assisted with mineral microprobe analysessupported by the Russian President Grant for State Support of Young Russian Scientists (Project No.MK575.2017.5)to A.K.and N.L.+1 种基金by the Russian Foundation for Basic Research (Project No.16-05-00298a)by the Program of Basic Research of the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences
文摘We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths (garnet peridotite,eclogite and clinopyroxene-phlogopite rocks) and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle (SCLM) and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation (Phl1) occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation (Phl2) occurs as rims and outer zones that surround the Phl1 grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phl1,within the garnet peridotite and clinopyroxeneephlogopitexenoliths,is characterised bylow Ti and Cr contents (TiO2<1 wt.%,Cr2O3<1 wt.% andMg#=100×Mg/(MgtFe)>92) typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr2O3 despite a wider range of TiO2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations (TiO2 > 2 wt.%,Cr2O3 > 1 wt.% and Mg#=100 × Mg/(Mg + Fe)< 92) and compositionally overlaps with phlogopite from polymict breccia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phl1 grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.
基金supported by the National Natural Science Foundation of China (Nos. 41876037,41273013)the SDUST Research Fund (No. 2015TDJH101)+1 种基金the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Nos. 2016RCJJ008 and 2015RCJJ012)the Shandong Provincial Natural Science Foundation of China (No. ZR2019PD017)
文摘This paper presents whole-rock Hf isotopic data for a suite of eclogite and garnet clinopyroxenite xenoliths hosted in the Early Cretaceous dioritic intrusions from the Xuzhou-Suzhou area along the southeastern margin of the Eastern Block of the North China Craton(NCC).Six of the eight studied xenolith samples plot significantly above the terrestrial Hf-Nd isotopic array and haveεHf(0)value up to+60.All the samples define a well correlated 147 Sm/144 Nd-143 Nd/144 Nd age of 2081 Ma,which is considered to record the granulite-facies metamorphism.In contrast,the Lu-Hf isotope system faithfully records the protolith information.The mineralogical assemblage,especially garnet and/or zircon(rutile to some extent)mainly controlled the decoupling of Hf-Nd isotope.The metamorphic modification on protolith characteristics and the differences in element mobility during metamorphism may also reinforce the observed decoupling between the Sm-Nd and Lu-Hf isotope systems;i.e.,the absence of the correlations inεNd-εHf and also 87 Sr/86 Sr-143 Nd/144 Nd diagram.The Lu/Hf isochron age of 2424 Ma is similar to the zircon age peak of the studied xenoliths and the dominant age of NCC basement,indicating that the igneous protolith has an affinity to the Archean basement of the NCC.Furthermore,the positiveεHf(t)values at 2500 Ma indicate a crustal growth event of 2500 Ma in the NCC.
文摘Uliramafie xenoliths provide an important constraint on the composition,strueture and evolution of the lithosphere mantle beneath eastern China. Most of the xenoliths entrained by the Cenzoic basalts have de pleted Sr and Nd isotopie composition. Interestingly evidences have been found for old ehriehed lithosphere mantle beneath thick Arehaean and post-Arehaean erust (>35 km ) and for relatively homogeneous and depleted lithosphere mantle bencath thin erust (< 35 km ). Furthermore the chemieal composition of the lithosphere mantle is overall fertile regardless of the age of the overlying erust. The spatial variability in ehemieal and Sr and Nd isotopie eompositions of the ultramafie xenoliths in relation to the lithospherie ages and geometry implies a mixture strueture of the lithosphere mantle beheath easiern China. which consists of recently aecreted asthenospherie diapirs and old modified remnants. Isotopie eomposition of the Cenozoie basalts show obvious similarities with ocein island basalt (OIH ). We argue that enriehed lithosphere mantle delamineted during Mesozoic-Cenozoie tectonie-thermal events was generally involved in the Cenozoie basaltic voleanism.
文摘Ultramafic hypoxenoliths found in the alkali-rich porphyry in the Liuhe Village, Heqing, Yunnan, China, are of great significance in understanding the origin and evolution of the porphyry. This paper discusses the mineralogical features of the hypoxenoliths. It shows that the xenoliths are characterized by the upper mantle rocks modified to certain extent by the enriched mantle fluid metasomatism in the mantle environment, with the enriched mantle property of low-degree partial melting. This constitutes the important mineralogical evidence for the petrogenesis and mineralization of alkali-rich porphyry.
文摘Spinel-bearing lherzolite xenoliths from the Hossere Garba (1272 m.a.s.l) volcano on the Adamawa Plateau, is located in Likok village, at about 35 km to WSW of Ngaoundere. These xenoliths (~11 cm size) have been sampled into the host basaltic lava flows from the NE flank of the Hossere Garba volcano. These xenoliths characterized by porphyroclastic texture consisted of olivine (~55 vol.%), orthopyroxene (~19 vol.%) and clinopyroxene (~21 vol.%) crystals. Spinel crystals (~5 vol.%) are red brown and interstitial between the crystals of olivine and pyroxenes. CaO contents are low (<0.08 wt%) in olivine and similar to those estimated (CaO: 0.05 - 0.1 wt%) for the mantle origin. The values of AlVI/AlIV ratio range between 1.1 and 1.3 for the Cr-diopside crystals from Hossere Garba xenoliths. The constant value of the volumes V(Cell) and V(M1) for clinopyroxene compositions, indicates the similar pressures. Hossere Garba represents a residual sequence issued from partial melting of a mantle source. Similar compositions have been recorded in minerals of ultramafic xenoliths from other ultramafic xenoliths domains of the Cameroon Line and the Adamawa Plateau.
基金This research was financially facilitated by Orlando Vasellisupported by the Bolyai Postdoctoral Fellowship Program,a Marie Curie International Reintegration Grant(Grant No.NAMS-230937)+3 种基金a postdoctoral grant(Grant No.PD101683)of the Hungarian Scientific Research Found(OTKA)to I.J.K.as well as a grant of the Hungarian Scientific Research Found(Grant No.78425)to Cs.supported by a grant from the U.S.National Science Foundation(EAR1624589)to R.J.supported by the GINOP-2.3.2-152016-00009 research program。
文摘Clinopyroxene-enriched upper mantle xenoliths classified as wehrlites are common(~20% of all xenoliths) in the central part of the Nograd-G(o| ")m(o|")r Volcanic Field(NGVF),situated in the northern margin of the Pannonian Basin in northern Hungary and southern Slovakia.In this study,we thoroughly investigated 12 wehrlite xenoliths,two from each wehrlite-bearing occurrence,to determine the conditions of their formation.Specific textural features,including clinopyroxene-rich patches in an olivine-rich lithology,orthopyroxene remnants in the cores of newlyformed clinopyroxenes and vermicular spinel forms all suggest that wehrlites were formed as a result of intensive interaction between a metasomatic agent and the peridotite wall rock.Based on the major and trace element geochemistry of the rock-forming minerals,significant enrichment in basaltic(Fe,Mn,Ti) and high field strength elements(Nb,Ta,Hf,Zr) was observed,compared to compositions of common lherzolite xenoliths.The presence of orthopyroxene remnants and geochemical trends in rock-forming minerals suggest that the metasomatic process ceased before complete wehrlitization was achieved.The composition of the metasomatic agent is interpreted to be a mafic silicate melt,which was further confirmed by numerical modelling of trace elements using the plate model.The model results also show that the melt/rock ratio played a key role in the degree of petrographic and geochemical transformation.The lack of equilibrium and the conclusions drawn by using variable lherzolitic precursors in the model both suggest that wehrlitization was the last event that occurred shortly before xenolith entrainment in the host mafic melt.We suggest that the wehrlitization and the Plio-Pleistocene basaltic volcanism are related to the same magmatic event.
基金financially supported by the National Key Research and Development Program of China(grant No.2016YFC0600310)the 973 Project(2015CB452600,2011CB4031006)+2 种基金the National Natural Science Foundation of China(grants No.41872083,41472076)the Program of the China Geological Survey(grants No.DD20160024–07,DD20179172)the China Fundamental Research Funds for the Central Universities(grant No.2652018133).
文摘Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.
基金supported by the National Natural Science Foundation of China(Nos.41702225,42030306)the special Foundation(GASI-GEOGE-02)from State Oceanic Administrationthe 111 Project(No.B18048)。
文摘Mantle peridotite xenoliths in Jiaohe City,located near the northern part of the Tan-Lu fault,are key evidence for constraining the nature and evolution of the subcontinental lithospheric mantle(SCLM)of the NE China.Geochemical characteristics of Jiaohe peridotite xenoliths have been well studied,whereas the microstructures and associated fabrics remain poorly known.We report here major element composition of the constituent minerals,P-T conditions,microstructure,lattice preferred orientations(LPOs)of a set of xenoliths having coarse-grained and granuloblastic to porphyroclastic textures.These xenoliths are characterized by forsterite content of 89-91 in olivine.Dislocation microstructures,in olivine crystals revealed by oxidation decoration technique,are characterized by free dislocation,dislocation walls,dislocation loops and subgrains.Microstructures and deformation mechanism maps indicate that dislocation creep is the dominant deformation mechanism of almost anhydrous olivine in the SCLM.In most samples,the observed LPOs of olivine are typical A-type fabric.Stresses measured in the xenoliths using several olivine piezometers are~2.7-8.5 MPa.The equilibration temperature conditions,calculated using several geo-thermometers,indicate the equilibrium temperature condition of peridotites in a range of 891 to 993℃.These results provide rheological constraint on the deformation of the SCLM in Jiaohe.Combined with the data for mantle xenoliths from adjacent regions,a heterogeneous evolution of the lithosphere deformation is inferred at the Jiaohe region.We propose that characteristics of the studied peridotite may be related to the Tan-Lu fault.
基金supported by RBRF grants 05-05-64718,03-05-64146,08-05-00524,11-05-00060,11-05-91060-PICSjointresearch projects of IGM SB RAS and ALROSA Stock Company 77-2,65-03,02-05,grant of the President of Russia MK-3240.2014.5
文摘Mantle xenoliths(>150) and concentrates from late autolithic breccia and porphyritic kimberlite from the Sytykanskaya pipe of the Alakit field(Yakutia) were analyzed by EPMA and LAM ICP methods.In P-TX-f(O2) diagrams minerals from xenoliths show widest variations,the trends P-Fe#-CaO,f(O2)for minerals from porphyric kimberlites are more stepped than for xenocrysts from breccia.Ilmenite PTX points mark moving for protokimberlites from the lithosphere base(7.5 GPa) to pyroxenite lens(5-3.5 GPa) accompanied by Cr increase by AFC and creation of two trends P-Fe#OI10-12%and13-15%.The Opx-Gar-based mantle geotherm in Alakit field is close to 35 mW/m2 at 65 GPa and 600 C near Moho was determined.The oxidation state for the megacrystalline ilmenites is lower for the metasomatic associations due to reduction of protokimberlites on peridotites than for uncontaminated varieties at the lithosphere base.Highly inclined linear REE patterns with deep HFSE troughs for the parental melts of clinopyroxene and garnet xenocrysts from breccia were influenced by differentiated protokimberlite.Melts for metasomatic xenoliths reveal less inclined slopes without deep troughs in spider diagrams.Garnets reveal S-shaped REE patterns.The clinopyroxenes from graphite bearing Cr-websterites show inclined and inflected in Gd spectrums with LREE variations due to AFC differentiation.Melts for garnets display less inclined patterns and Ba-Sr troughs but enrichment in Nb-Ta-U.The40Ar/39Ar ages for micas from the Alakit mantle xenoliths for disseminated phlogopites reveal Proterozoic(1154 Ma) age of metasomatism in early Rodinia mantle.Veined glimmerites with richterite- like amphiboles mark1015 Ma plume event in Rodinia mantle.The600-550 Ma stage manifests final Rodinia break-up.The last 385 Ma metasomatism is protokimberlite-related.
基金supported by FAPDF(Call03/2018Process n°23568.93.50253.24052018)Serrapilheira Institute(Serra-1709-18152)。
文摘Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite,Pimenta Bueno Kimberlitic Field,which is located on the southwestern border of the Amazonian Craton.We also present Sr-Nd isotopic data of garnet xenocrysts and whole-rocks from the Carolina kimberlite.Mantle xenoliths are mainly clinopyroxenites and garnetites.Some of the clinopyroxenites were classified as GPP–PP–PKP(garnet-phlogopite peridotite,phlogopite-peridotite,phlogopite-K-richterite peridotite)suites,and two clinopyroxenites(eclogites)and two garnetites are relicts of an ancient subducted slab.Temperature and pressure estimates yield 855–1102℃ and 3.6–7.0 GPa,respectively.Clinopyroxenes are enriched in light rare earth elements(LREE)(La_(N)/Yb_(N)=5–62;Ce_(N)/Sm_(N)=1–3;where N=primitive mantle normalized values),they have high Ca/Al ratios(10–410),low to medium Ti/Eu ratios(742–2840),and low Zr/Hf ratios(13–26),which suggest they were formed by metasomatic reactions with CO_(2)-rich silicate melts.Phlogopite with high TiO_(2)(>2.0 wt.%),Al_(2)O_(3)(>12.0 wt.%),and FeOt(5.0–13.0 wt.%)resemble those found in the groundmass of kimberlites,lamproites and lamprophyres.Conversely,phlogopite with low TiO_(2)(<1.0 wt.%)and lower Al_(2)O_(3)(<12.0 wt.%)are similar to those present in GPP-PP-PKP,and in MARID(mica-amphibole-rutile-ilmenite-diopside)and PIC(phlogopite-ilmenite-clinopyorxene)xenoliths.The GPP-PP-PKP suite of xenoliths,together with the clinopyroxene and phlogopite major and trace element signatures suggests that an intense proto-kimberlite melt metasomatism occurred in the deep cratonic lithosphere beneath the Amazonian Craton.The Sr-Nd isotopic ratios of pyrope xenocrysts(G3,G9 and G11)from the Carolina kimberlite are characterized by high ^(143)Nd/^(144)Nd(0.51287–0.51371)and eNd(+4.55 to+20.85)accompanied with enriched ^(87)Sr/^(86)Sr(0.70405–0.71098).These results suggest interaction with a proto-kimberlite melt compositionally similar with worldwide kimberlites.Based on Sr-Nd whole-rock compositions,the Carolina kimberlite has affinity with Group 1 kimberlites.The Sm-Nd isochron age calculated with selected eclogitic garnets yielded an age of 291.9±5.4 Ma(2σ),which represents the cooling age after the proto-kimberlite melt metasomatism.Therefore,we propose that the lithospheric mantle beneath the Amazonian Craton records the Paleozoic subduction with the attachment of an eclogitic slab into the cratonic mantle(garnetites and eclogites);with a later metasomatic event caused by proto-kimberlite melts shortly before the Carolina kimberlite erupted.
基金supported by RBRF grants:05-05-64718,11-0500060,11-05-91060-PICS,16-05-00860the projects 77-2,65-03,02-05 UIGGM SD RAS and ALROSA Stock Company
文摘The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.
文摘Petrological and mineralogical characteristics of gabbro xenoliths in Mesozoic basalts in Ningyuan-Daoxian region, Huan province show that they belong to different rock series. The basalt is similar to alkline basalt of an intracontinental rift ; while the gabbro xenolith shows that it is the differentiated outcrop of tholeiitic lava, similar to that of layer-shaped basic pluton. The gabbro xenolith represents an early intrusion of basic melt and the melting event is probably the earlier menifestation of lithosphere mibilization in Mesozoic in the South China.