XCTD, as one of the most important instruments for the deep sea exploration, is an important device for deep-sea hydrological data acquisition. But some difficult technical problems of traditional metal enameled wire ...XCTD, as one of the most important instruments for the deep sea exploration, is an important device for deep-sea hydrological data acquisition. But some difficult technical problems of traditional metal enameled wire channel have become the major bottleneck for XCTD development. Aiming at this problem, this paper puts forward with using single-mode fiber as the transmission channel of XCTD. Firstly, this paper makes a brief analysis on the problems of using enameled wire as transmission channel faces. Secondly, it analyzes the advantages of the single mode fiber technology. Finally, it makes theoretical research and experimental verification of the influence of seawater temperature change on the optical fiber transmission channel. The experimentat results show that the error rate at the transmission rate of 10 MB/S is 0, and the loss can be negligible when the single-mode fiber channel is used in the sea water and the seawater temperature changes from 0 to 20℃. This method will greatly increase the rate of signal transmission and the transmission stability. And this paper shows that using the single-mode fiber as the transmission channel of XCTD has certain feasibility.展开更多
To improve the transmission performance of XCTD channel, this paper proposes a method to measure directly and fit the channel transmission characteristics by using frequency sweeping method. Sinusoidal signals with a ...To improve the transmission performance of XCTD channel, this paper proposes a method to measure directly and fit the channel transmission characteristics by using frequency sweeping method. Sinusoidal signals with a frequency range of 100 Hz to 10 k Hz and an interval of 100 Hz are used to measure transmission characteristics of channels with lengths of 300 m, 800 m, 1300 m, and 1800 m. The correctness of the fitted channel characteristics by transmitting square wave, composite waves of different frequencies, and ASK modulation are verified. The results show that when the frequency of the signal is below 1500 Hz, the channel has very little effect on the signal. The signal compensated for amplitude and phase at the receiver is not as good as the uncompensated signal.Alternatively, when the signal frequency is above 1500 Hz, the channel distorts the signal. The quality of signal compensated for amplitude and phase at receiver is better than that of the uncompensated signal. Thus, we can select the appropriate frequency for XCTD system and the appropriate way to process the received signals. Signals below1500 Hz can be directly used at the receiving end. Signals above 1500 Hz are used after amplitude and phase compensation at the receiving end.展开更多
基金supported by the Research Program of Application Foundation and Advanced Technology of Tianjin (No. 14JCYBJC16300)the National Natural Science Foundation of China (No. 41206031)
文摘XCTD, as one of the most important instruments for the deep sea exploration, is an important device for deep-sea hydrological data acquisition. But some difficult technical problems of traditional metal enameled wire channel have become the major bottleneck for XCTD development. Aiming at this problem, this paper puts forward with using single-mode fiber as the transmission channel of XCTD. Firstly, this paper makes a brief analysis on the problems of using enameled wire as transmission channel faces. Secondly, it analyzes the advantages of the single mode fiber technology. Finally, it makes theoretical research and experimental verification of the influence of seawater temperature change on the optical fiber transmission channel. The experimentat results show that the error rate at the transmission rate of 10 MB/S is 0, and the loss can be negligible when the single-mode fiber channel is used in the sea water and the seawater temperature changes from 0 to 20℃. This method will greatly increase the rate of signal transmission and the transmission stability. And this paper shows that using the single-mode fiber as the transmission channel of XCTD has certain feasibility.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFC1400400)
文摘To improve the transmission performance of XCTD channel, this paper proposes a method to measure directly and fit the channel transmission characteristics by using frequency sweeping method. Sinusoidal signals with a frequency range of 100 Hz to 10 k Hz and an interval of 100 Hz are used to measure transmission characteristics of channels with lengths of 300 m, 800 m, 1300 m, and 1800 m. The correctness of the fitted channel characteristics by transmitting square wave, composite waves of different frequencies, and ASK modulation are verified. The results show that when the frequency of the signal is below 1500 Hz, the channel has very little effect on the signal. The signal compensated for amplitude and phase at the receiver is not as good as the uncompensated signal.Alternatively, when the signal frequency is above 1500 Hz, the channel distorts the signal. The quality of signal compensated for amplitude and phase at receiver is better than that of the uncompensated signal. Thus, we can select the appropriate frequency for XCTD system and the appropriate way to process the received signals. Signals below1500 Hz can be directly used at the receiving end. Signals above 1500 Hz are used after amplitude and phase compensation at the receiving end.