Let X be a nonempty subset of a group G. A subgroup H of G is said to be X-spermutable in G if, for every Sylow subgroup T of G, there exists an element x E X such that HT^x= T^xH. In this paper, we obtain some result...Let X be a nonempty subset of a group G. A subgroup H of G is said to be X-spermutable in G if, for every Sylow subgroup T of G, there exists an element x E X such that HT^x= T^xH. In this paper, we obtain some results about the X-s-permutable subgroups and use them to determine the structure of some finite groups.展开更多
Let X be a nonempty subset of a group G. A subgroup H of G is said to be X- s-permutable in G if there exists an element x E X such that HP^x = P^xH for every Sylow subgroup P of G. In this paper, some new results are...Let X be a nonempty subset of a group G. A subgroup H of G is said to be X- s-permutable in G if there exists an element x E X such that HP^x = P^xH for every Sylow subgroup P of G. In this paper, some new results are given under the assumption that some suited subgroups of G are X-s-permutable in G.展开更多
基金Foundation item: the National Natural Science Foundation of China (No. 10771180) the Postgraduate Innovation Grant of Jiangsu Province and the International Joint Research Fund between NSFC and RFBR.
文摘Let X be a nonempty subset of a group G. A subgroup H of G is said to be X-spermutable in G if, for every Sylow subgroup T of G, there exists an element x E X such that HT^x= T^xH. In this paper, we obtain some results about the X-s-permutable subgroups and use them to determine the structure of some finite groups.
基金Supported by the National Natural Science Foundation of China (Grant No10871210)the Natural Science Foundation of Guangdong Province (Grant No06023728)
文摘Let X be a nonempty subset of a group G. A subgroup H of G is said to be X- s-permutable in G if there exists an element x E X such that HP^x = P^xH for every Sylow subgroup P of G. In this paper, some new results are given under the assumption that some suited subgroups of G are X-s-permutable in G.