期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of casting current on structure and properties of a nanostructured Zr-Cu-Fe-Al bulk metallic glass
1
作者 Si-nan Liu Wei-xia Dong +7 位作者 Chen-yu Lu Zhu-wei Lu Jia-cheng Ge Chen-chen Yuan Bao-an Sun Tao Feng Xun-li Wang Si Lan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第6期630-636,共7页
The effects of casting currents on the thermophysical behaviors, atomic and nanoscale structure, and mechanical properties of two Zr-based-bulk metallic glasses, i.e., Zr59Cu33A18 and Zr59(Cuo.55Feo.45)33A18, were s... The effects of casting currents on the thermophysical behaviors, atomic and nanoscale structure, and mechanical properties of two Zr-based-bulk metallic glasses, i.e., Zr59Cu33A18 and Zr59(Cuo.55Feo.45)33A18, were studied by using differential scanning calorimetry, wide-angle X-ray diffraction, and small-angle X-ray scattering, as well as compression tests. The casting currents can be tuned to change the casting initiative temperature. Results revealed that there is no anomalous structural change for the Zr59Cu33A18 molten liquid before crystallization during cooling with different casting currents. In contrast, liquid-state phase separation was suggested to occur in the Zr59(Cuo.55Feo.45)33A18 molten liquid prepared using lower casting current before crystallization during cooling. The position shift of the first sharp diffraction peak for the diffraction pattern of Zr59(Cuo.55Feo.45)33A18 shows that the density of the molten liquid may decrease upon cooling at different casting currents. The small-angle X-ray scattering results indicate that the heterogeneity of the Zr59(Cuo.55- Feo.gs)33A18 metallic glasses increases with decreasing the casting temperature. As a result, the metallic glasses with a liquid-state phase separation possess better mechanical properties, including higher-yielding stress and more significant compressive ductility. The increase in degree of heterogeneity formed by nanoscale liquid-state phase separation and their interactions with the shear bands for the Zr-Cu-Fe-Al bulk metallic glasses were suggested to be responsible for the enhanced mechanical properties. 展开更多
关键词 Bulk metallic glass Liquid-state phase separation Wide-angle X-ray diffraction Small-angle x-rayscattering Structure heterogeneity
原文传递
Peptide self-assembly into lamellar phases and the formation of lipid-peptide nanostructures 被引量:1
2
作者 Karin Kornmueller Bernhard Lehofer +2 位作者 Gerd Leitinger Heinz Amenitsch Ruth Prassl 《Nano Research》 SCIE EI CAS CSCD 2018年第2期913-928,共16页
Lipids exhibit an extraordinary polymorphism in self-assembled mesophases, with lamellar phases as the most relevant biological representative. To mimic lipid lamellar phases with amphiphilic designer peptides, seven ... Lipids exhibit an extraordinary polymorphism in self-assembled mesophases, with lamellar phases as the most relevant biological representative. To mimic lipid lamellar phases with amphiphilic designer peptides, seven systematically varied short peptides were engineered. Indeed, four peptide candidates (V4D, V4WD, V4WD2, I4WD2) readily self-assembled into lamellae in aqueous solution. Small-angle X-ray scattering (SAXS) patterns revealed ordered lamellar structures with a repeat distance of 4-5 nm. Transmission electron microscopy (TEM) images confirmed the presence of stacked sheets. Two derivatives (V3D and V4D2) remained as loose aggregates dispersed in solution; one peptide (L4WD2) formed twisted tapes with internal lameUae and an antiparaUel -type monomer aligrtment. To understand the interaction of peptides with lipids, they were mixed with phosphatidylcholines. Low peptide concentrations (1.1 mM) induced the formation of a heterogeneous mixture of vesicular structures. Large multilamellar vesicles (MLV, d-spacing - 6.3 nm) coexisted with oligo- or unilamellar vesicles (- 50 nm in diameter) and bicelle-like structures (- 45 nm length, - 18 nm width). High peptide concentrations (11 mM) led to unilamellar vesicles (ULV, diameter - 260-280 nm) with a homogeneous mixing of lipids and peptides. SAXS revealed the temperature-dependent fine structure of these ULVs. At 25 ℃ the bilayer is in a fully Interdigitated state (headgroup-to-headgroup distance dH, -2.9 nm), whereas at 50 ℃this interdigitation opens up (dtm- 3.6 nm). Our results highlight the versatility of self-assembled peptide superstructures. Subtle changes in the amino acid composition are key design elements in creating peptide- or lipid- peptide nanostructures with richness in morphology similar to that of naturally occurrin~ lioids. 展开更多
关键词 amphiphilic designerpeptides lipids NANOSTRUCTURES LAMELLAE small-angle x-rayscattering (SAXS) transmission electronmicroscopy (TEM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部