期刊文献+
共找到569,412篇文章
< 1 2 250 >
每页显示 20 50 100
Caffeic acid phenethyl ester and its benzoyl derivatives:synthesis and X-ray structural analysis 被引量:1
1
作者 宁显玲 马小艳 +5 位作者 陈柱陀 朱仁宗 李超 王孝伟 张志丽 刘俊义 《Journal of Chinese Pharmaceutical Sciences》 CAS 2011年第1期37-41,共5页
Caffeic acid phenethyl ester (CAPE), the main biologically active component of propolis, has been successfully synthesized from caffeic acid and β-bromoethylbenzene catalyzed by Na2CO3 in a mixed solvent of HMPA-CH... Caffeic acid phenethyl ester (CAPE), the main biologically active component of propolis, has been successfully synthesized from caffeic acid and β-bromoethylbenzene catalyzed by Na2CO3 in a mixed solvent of HMPA-CH3CN. To better understand the struc^re-activity relationship of CAPE, phenylethyl-monobenzoylcinnamate and phenylethyl-dibenzoylcinnamate were prepared. Meanwhile, the structure of phenylethyl-monobenzoylcinnamate was confirmed by single-crystal X-ray diffiaction. 展开更多
关键词 Caffeic acid phenethyl ester Benzoyl derivatives Single-crystal x-ray diffraction
原文传递
Synthesis and X-ray Structural Studies of 2-(2-Benzofuroylimino)-3-aryl-4-phenyl-1,3-thiazolines
2
作者 王喜存 王芳 +1 位作者 权正军 张彰 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第8期957-962,共6页
The synthesis for acyliminothiazolines by treatment of N, N□-substituted thioureas with α-bromoacetophenone under aqueous media was described. 2-(2-Benzofuroylimino)-3-aryl- 4-phenyl-1,3- thiazolines were characte... The synthesis for acyliminothiazolines by treatment of N, N□-substituted thioureas with α-bromoacetophenone under aqueous media was described. 2-(2-Benzofuroylimino)-3-aryl- 4-phenyl-1,3- thiazolines were characterized by infrared, NMR spectroscopy and elemental analysis. The single crystals of compounds 4a and 4b were grown by slow evaporation of 80% ethanol solution at room temperature. Compounds 4a and 4b crystallize in triclinic space group P1 and monoclinic space group P21/c, respectively. 展开更多
关键词 crystal structure 2-iminothiazolines THIOUREAS aqueous media SYNTHESIS
在线阅读 下载PDF
Cobalt‑Based Electrocatalysts for Sustainable Nitrate Conversion:Structural Design and Mechanistic Advancements
3
作者 GuoLiang Chang Xueqiu Chen +2 位作者 Jing‑Jing Lv Zhijie Kong Zheng‑Jun Wang 《Nano-Micro Letters》 2026年第3期37-84,共48页
Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt... Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt-based electrocatalysts,emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction(NO3RR)through dimensional control,compositional tuning,and coordination microenvironment modulation.Notably,by critically analyzing metallic cobalt,cobalt alloys,cobalt compounds,cobalt single atom and molecular catalyst configurations,we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR,including the dynamic reconstruction during operation and its impact on active site.Synergizing experimental breakthroughs with computational modeling,we decode mechanisms underlying competitive hydrogen evolution suppression,intermediate adsorption-energy optimization,and durability enhancement in complex aqueous environments.The development of cobalt-based catalysts was summarized and prospected,and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced.Bridging surface science and applications,it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably. 展开更多
关键词 Electrocatalytic nitrate reduction reaction Cobalt-based Electrocatalysts Electronic structure Coordination environment
在线阅读 下载PDF
Dynamic fracture behavior and coupled impact effect of as-cast W-Zr-Ti energetic structural material
4
作者 Yuxuan Qi Liang Mao +3 位作者 Chunlan Jiang Guitao Liu Kongxun Zhao Mengchen Zhang 《Defence Technology(防务技术)》 2026年第1期422-435,共14页
This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior... This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment. 展开更多
关键词 Energetic structural material Dynamic fracture behavior Coupled impact effect Mechanical property Peridynamics As-cast W-Zr-Ti alloy
在线阅读 下载PDF
Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes
5
作者 Yan-Jiang Li Shu-Lei Chou Yao Xiao 《Chinese Chemical Letters》 2025年第2期118-132,共15页
The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,com... The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,comprehensively investigating of the dynamic crystal structure evolutions of Na_(x)TMO_(2)associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable.In-situ high-energy X-ray diffraction(HEXRD),a powerful technology to distinguish the crystal structure of electrode materials,has been widely used to identify the phase evolutions of Na_(x)TMO_(2)and then profoundly revealed the electrochemical reaction processes.In this review,we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction(XRD)over conventional XRD in detail.The optimizations of structural stability and electrochemical properties for P2-,O3-,and P2/O3-type Na_(x)TMO_(2)cathodes through single/dual-site substitution,high-entropy design,phase composition regulation,and surface engineering are summarized.The dynamic crystal structure evolutions of Na_(x)TMO_(2)polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded.The interior relationships between structure/component of Na_(x)TMO_(2)polytypes and their electrochemical properties are discussed.Finally,we look forward the research directions and issues in the route to improve the electrochemical properties of Na_(x)TMO_(2)cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques.This review will provide significant guidelines for rational designs of high-performance Na_(x)TMO_(2)cathodes. 展开更多
关键词 Layered oxides Sodium-ion batteries Phase evolutions In-situ high-energy x-ray diffraction ELECTROCHEMISTRY
原文传递
Microstructural evolution and hydraulic response of shale self-propped fracture using X-ray computed tomography and digital volume correlation
6
作者 Ting Huang Cheng Zhai +4 位作者 Ting Liu Yong Sun Hexiang Xu Yu Wang Jing Huang 《International Journal of Mining Science and Technology》 2025年第3期345-362,共18页
Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This stu... Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This study employs X-ray computed tomography(CT)and digital volume correlation(DVC)to investigate the microstructural evolution and hydromechanical responses of shale self-propped fracture under varying confining pressures,highlighting the critical role of shale particles in maintaining fracture conductivity.Results indicate that the fracture aperture in the self-propped sample is significantly larger than in the unpropped sample throughout the loading process,with shale particles tending to crush rather than embedded into the matrix,thus maintaining flow pathways.As confining pressure increases,contact areas between fracture surfaces and particles expand,enhancing the system's stability and compressive resistance.Geometric analyses show flow paths becoming increasingly concentrated and branched under high stress.This resulted in a significant reduction in connectivity,restricting fracture permeability and amplifying the nonlinear gas flow behavior.This study introduces a permeability-strain recovery zone and a novel sensitivity parameter m,delineating stress sensitivity boundaries for permeability and normal strain,with m-value increasing with stress,revealing four characteristic regions.These findings offer theoretical support for optimizing fracturing techniques to enhance resource extraction efficiency. 展开更多
关键词 Digital volume correlation x-ray CT scanning Fracture aperture Deformation characteristics Stress sensitivity Permeability
在线阅读 下载PDF
Analyzing structural changes induced by gas migration in heterogeneous pellet/powder bentonite mixtures through X-ray computed micro-tomography
7
作者 Mohammed Zaidi Nadia Mokni +1 位作者 Magdalena Dymitrowska Kui Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3198-3212,共15页
Understanding the mechanisms of gas transport and the resulting preferential pathways formation through bentonite-based barriers is essential for their performance evaluation.In this experimental study,gas migration w... Understanding the mechanisms of gas transport and the resulting preferential pathways formation through bentonite-based barriers is essential for their performance evaluation.In this experimental study,gas migration within a heterogenous mixture of MX80 bentonite pellets and powder with a ratio of 80/20 in dry mass was investigated.A novel X-ray transparent constant volume cell has been developed to assess the effect of gas pressure,material heterogeneities,and water vapor gas saturation on breakthrough pressure and gas pathways.The new cell allows to perform high-resolution X-ray computed micro-tomography(X-ray μCT)scans to track microstructural changes during different phases of saturation and gas injection.Experimental results showed that the gas breakthrough occurred when the pressure was raised to 3 MPa.This is slightly higher than the expected swelling pressure(2.9 MPa)of the bentonite sample.Each gas injection was followed by a long resaturation phase restoring material homogeneity at μCT resolution scale(16 mm).However,the elapsed time needed for gas to breakthrough at 3 MPa diminished at each subsequent injection test.X-ray μCT results also revealed the opening of the specimen/cell wall interface during gas passage.This opening expanded as the injection pressure increased.The gas flow along the interface was associated with the development of dilatant pathways inside the sample,although they did not reach the outlet surface.It was observed that the water vapor gas saturation had no effect on the breakthrough pressure.These findings enhance the understanding of the complex mechanisms underlying microstructural evolution and gas pathway development within the highly heterogeneous mixture.The experimental outcomes highlight the effectiveness of X-ray μCT to improve quality protocols for engineering design and safety assessments of engineered barriers. 展开更多
关键词 Bentonite pellet-powder mixture Gas migration Breakthrough pressure Gas pathways x-ray computed tomography Heterogenous bentonite mixture
在线阅读 下载PDF
Status and Development of Rapid Detection Technology for Tunnel Structural Defects 被引量:5
8
作者 LIU Xuezeng FANG Maoliu +3 位作者 WU Dexing LI Yinping LIU Xingen LI Gang 《隧道建设(中英文)》 北大核心 2025年第4期657-676,I0005-I0024,共40页
Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an... Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection. 展开更多
关键词 TUNNEL structural defect inspection techniques inspection equipment rapid inspection
在线阅读 下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:5
9
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis 被引量:1
10
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
在线阅读 下载PDF
Structural Analysis of Hydroxamate Reagents by X-Ray Diffraction 被引量:1
11
作者 Ratan Chowdhury Frank Antolasic 《Journal of Earth Science and Engineering》 2012年第10期584-589,共6页
Axis House manufactures and supplies alkyl hydroxamate reagent of various carbon chain lengths for application in flotation of oxide copper and other minerals. As a part of reagent performance improvement, the structu... Axis House manufactures and supplies alkyl hydroxamate reagent of various carbon chain lengths for application in flotation of oxide copper and other minerals. As a part of reagent performance improvement, the structural factors of hydroxamate are examined by various analytical tools in particular with X-ray diffraction of single crystals. In a recent publication, the structures of n-octyl hydroxamic acid and its corresponding potassium salt are presented with findings of hydroxamic functional group geometric preference, H-bonding, keto-enol tautomerisation, acid-salt aggregation and alignment of carbon chain. In this paper, an example of branched alkyl hydroxamate3,5,5-trimethyl hexyl hydroxamate. hydroxamate is presented and compared with the result of linear alkyl 展开更多
关键词 Alkyl hydroxamic acid potassium alkyl hydroxamate x-ray crystal structures flotation of oxide copper minerals.
在线阅读 下载PDF
Rietveld refinement of powder X-ray diffraction,microstructural and mechanical studies of magnesium matrix composites processed by high energy ball milling 被引量:2
12
作者 T.Ramkumar M.Selvakumar +3 位作者 R.Vasanthsankar A.S.Sathishkumar P.Narayanasamy G.Girija 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第4期390-398,共9页
This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC a... This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC and Mg-Al_(2)O_(3)composites subjected to high energy ball milling for different vol%of secondary particles 20,30 and 40%of SiC and Al_(2)O_(3)are studied by X-Ray diffraction technique.The rietveld method as implemented in the Fullprof program is applied in order to determine the quantities of the resulting crystalline phases and amorphous phases at each stage of the mechanical treatment.Microstructural examination is carried out using Scanning Electron Microscope(SEM).In addition,crystal structural analysis using appropriate size and strain models is performed in order to handle the distinctive anistrophy that is observed in convinced crystallographic directions for the magnesium composite.The results are furnished in terms of crystalline domains size enlargement of the magnesium composites phases upon prolonged milling duration and discussed in the light of up to date views and theories on crystal growth of nanocrystaline materials.The hardness of the composite samples is calculated by Vickers’s Hardness tester.Further,dry sling wear test and corrosion test are performed for the fabricated composites.Composite with 30%secondary particles incorporated magnesium composites exhibits better wear and corrosion resistance than the other composites. 展开更多
关键词 Rietveld refinement x-ray diffraction Crystal structure Micro structure Wear and corrosion
在线阅读 下载PDF
Time lapse in situ X-ray imaging of failure in structural materials under cyclic loads and extreme environments 被引量:3
13
作者 Weijian Qian Shengchuan Wu +2 位作者 Liming Lei Qiaodan Hu Changkui Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期80-103,共24页
Damage evolution characterization and performance evaluation under realistic conditions are essential to ensure reliable operation of critical safety components.However,previous studies focus on the surface detection ... Damage evolution characterization and performance evaluation under realistic conditions are essential to ensure reliable operation of critical safety components.However,previous studies focus on the surface detection because of very limited penetration capacity of nondestructive testing facilities.Here,we review the recent progress of material damage mechanism by various in situ testing rigs that are compat-ible with laboratory and synchrotron radiation X-ray facilities.Then,taking metallic alloys and composites as model materials,we demonstrate the unique advantages of in situ X-ray three-dimensional tomography in unveiling complex failure mechanisms,quantifying crack growth driving forces and crack closure phenomena,and elucidating the strengthening/degrading effects from microstructure and environment on structural material degradation.Finally,we also discuss the ongoing direction of in situ multi-scale visualization and characterization with the development of advanced high-energy X-ray facilities,the improvement of in situ devices and sample environments,the demand of high-throughput tests,and the processing and application of massive test data. 展开更多
关键词 In situ experiments Fatigue damage mechanism Correlative characterization x-ray computed tomography Lightweight structural materials
原文传递
Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses 被引量:2
14
作者 Chang-Qing Zhu Jun-Hao Tan +7 位作者 Yu-Hang He Jin-Guang Wang Yi-Fei Li Xin Lu Ying-Jun Li Jie Chen Li-Ming Chen Jie Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期77-82,共6页
Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy(>100 mJ)at 10 Hz repetition rate,we present a time-resolved x-ray diffraction system on an ultrafast time scale.The laser... Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy(>100 mJ)at 10 Hz repetition rate,we present a time-resolved x-ray diffraction system on an ultrafast time scale.The laser intensity is at relativistic regime(2×10^(19)W/cm^(2)),which is essential for effectively generating K_(α)source in high-Z metal material.The produced copper K_(α)radiation yield reaches to 2.5×10^(8)photons/sr/shot.The multilayer mirrors are optimized for monochromatizating and two-dimensional beam shaping of Kαemission.Our experiment exhibits its ability of monitoring the transient structural changes in a thin film SrCoO_(2.5)crystal.It is demonstrated that this facility is a powerful tool to perform dynamic studies on samples and adaptable to the specific needs for different particular applications with high flexibility. 展开更多
关键词 ultrafast x-ray diffraction transient structural changes multilayer mirrors
原文传递
STRUCTURAL DETERMINATION OF TITANIUM-OXIDE NANOPARTICLES BY X-RAY ABSORPTION SPECTROSCOPY 被引量:1
15
作者 Z.Y. Wu J. Zhang +10 位作者 K. Ibrahim M.I. Abbas G. Li Y. Tao T.D. Hu F.Q. Liu H.J. Qian Y.N. Xie Q.H. Zhang L. Gao Z.Z. Chen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第1期53-57,共5页
As a potential application of titanium-oxide nanoparticles, it is extremely important to investigate a detailed picture of the surface and interior structural properties of nanocrystalline materials, such as rutile an... As a potential application of titanium-oxide nanoparticles, it is extremely important to investigate a detailed picture of the surface and interior structural properties of nanocrystalline materials, such as rutile and anatase with diameters 7.0 and 4.5nm, respectively. X-ray absorption spectroscopy has been used to identify the local Ti environment and related electronic structure. We combine the experimental results at the Ti edge in both bulk and nano-crystals to determine the lattice distortion in terms of differently characteristic preedge features and the variation in the multiple-scattering region of X-ray absorption near-edge structure (XANES) spectra. The relationship between the transition peaks and the surface-to volume ratio is also discussed. 展开更多
关键词 x-ray absorption near edge structure nano particle transition metal oxide
在线阅读 下载PDF
Structural Color Dynamic Graphics Display Based on Microlens Array 被引量:1
16
作者 LI Xue-han LIU Ling-zhi +1 位作者 HUANG Min LI Xiu 《印刷与数字媒体技术研究》 北大核心 2025年第2期162-168,共7页
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be... It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display. 展开更多
关键词 structural color Microlens array Dynamic graphics display Moirémagnification Optical anti-counterfeiting
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
17
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Structural design in re duce d graphene oxide(RGO)metacomposites for enhanced microwave absorption in wide temperature spectrum 被引量:4
18
作者 Haoxu Si Yi Zhang +5 位作者 Yuhao Liu Zhiyang Jiang Cuiping Li Jingwei Zhang Xiaoxiao Huang Chunhong Gong 《Journal of Materials Science & Technology》 2025年第3期211-220,共10页
High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increa... High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum. 展开更多
关键词 Microwave absorbing materials Metacomposites Equivalent electromagnetic parameters structural parameters Wide temperature spectrum
原文传递
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
19
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY structural MECHANISMS
在线阅读 下载PDF
Tracking the phase transformation and microstructural evolution of Sn anode using operando synchrotron X-ray energy-dispersive diffraction and X-ray tomography 被引量:1
20
作者 Kang Dong Fu Sun +4 位作者 Andre Hilger Paul H.Kamm Markus Osenberg Francisco Garcia-Moreno Ingo Manke 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期429-437,I0011,共10页
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol... Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries. 展开更多
关键词 Sn anode Li-Sn phase transformation x-ray tomography Operando x-ray diffraction Anisotropic displacement Digital volume correlation(DVC)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部