期刊文献+
共找到4,003篇文章
< 1 2 201 >
每页显示 20 50 100
Tests of Solar X-Ray Image Reconstruction:Study of X-Ray Imaging Algorithms and Reconstruction Parameters 被引量:1
1
作者 Wenhui Yu Yang Su +2 位作者 Zhentong Li Wei Chen Weiqun Gan 《Research in Astronomy and Astrophysics》 2025年第3期90-110,共21页
Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method... Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method,an indirect imaging technique that requires algorithms to reconstruct and optimize images.During the last decade,a variety of algorithms have been developed and improved.However,it is difficult to quantitatively evaluate the image quality of different solutions without a true,reference image of observation.How to choose the values of imaging parameters for these algorithms to get the best performance is also an open question.In this study,we present a detailed test of the characteristics of these algorithms,imaging dynamic range and a crucial parameter for the CLEAN method,clean beam width factor(CBWF).We first used SDO/AIA EUV images to compute DEM maps and calculate thermal X-ray maps.Then these realistic sources and several types of simulated sources are used as the ground truth in the imaging simulations for both RHESSI and ASO-S/HXI.The different solutions are evaluated quantitatively by a number of means.The overall results suggest that EM,PIXON,and CLEAN are exceptional methods for sidelobe elimination,producing images with clear source details.Although MEM_GE,MEM_NJIT,VIS_WV and VIS_CS possess fast imaging processes and generate good images,they too possess associated imperfections unique to each method.The two forward fit algorithms,VF and FF,perform differently,and VF appears to be more robust and useful.We also demonstrated the imaging capability of HXI and available HXI algorithms.Furthermore,the effect of CBWF on image quality was investigated,and the optimal settings for both RHESSI and HXI were proposed. 展开更多
关键词 techniques image processing-Sun flares-Sun x-rays gamma rays
在线阅读 下载PDF
Manufacturing and testing of X-ray imaging components with high precision 被引量:5
2
作者 HU Jia sheng WU Xü 《光学精密工程》 EI CAS CSCD 北大核心 2005年第5期620-625,共6页
关键词 X光线图像 质量评价 纳米 精度
在线阅读 下载PDF
Precise and non-destructive approach for identifying the real concentration based on cured cemented paste backfill using hyperspectral imaging
3
作者 Qing Na Qiusong Chen Aixiang Wu 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期116-128,共13页
Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly diffic... Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters. 展开更多
关键词 cemented paste backfill CONCENTRATION hyperspectral imaging non-destructive testing
在线阅读 下载PDF
Tests of Solar X-Ray Image Reconstruction:A New Index for Assessing Image Quality 被引量:1
4
作者 Zhen-Tong Li Wen-Hui Yu +2 位作者 Yang Su Wei Chen Wei-Qun Gan 《Research in Astronomy and Astrophysics》 2025年第3期76-89,共14页
Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image qual... Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image quality of the reconstruction is still difficult,which is particularly useful for scheme design of X-ray imaging systems,testing and improvement of imaging algorithms,and scientific research of X-ray sources.Currently,there is no specified method to quantitatively evaluate the quality of X-ray image reconstruction and the point-spread function(PSF)of an X-ray imager.In this paper,we propose percentage proximity degree(PPD)by considering the imaging characteristics of X-ray image reconstruction and in particular,sidelobes and their effects on imaging quality.After testing a variety of imaging quality assessments in six aspects,we utilized the technique for order preference by similarity to ideal solution to the indices that meet the requirements.Then we develop the final quality index for X-ray image reconstruction,QuIX,which consists of the selected indices and the new PPD.QuIX performs well in a series of tests,including assessment of instrument PSF and simulation tests under different grid configurations,as well as imaging tests with RHESSI data.It is also a useful tool for testing of imaging algorithms,and determination of imaging parameters for both RHESSI and ASO-S/Hard X-ray Imager,such as field of view,beam width factor,and detector selection. 展开更多
关键词 SUN flares-Sun x-rays gamma-rays-techniques image processing
在线阅读 下载PDF
Signal estimation bias in x-ray dark-field imaging using dual phase grating interferometer
5
作者 Zhi-Li Wang Zun Zhang +1 位作者 Heng Chen Xin Ge 《Chinese Physics B》 2025年第3期550-558,共9页
In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean inten... In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images. 展开更多
关键词 x-ray imaging dual phase grating interferometer dark-field imaging signal bias
原文传递
Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples
6
作者 Miao-Miao Chen Min-Ling Zhang +5 位作者 Xiao Song Jun Jiang Xiaoqian Tang Qi Zhang Xiuhua Zhang Peiwu Li 《Chinese Chemical Letters》 2025年第1期464-468,共5页
Aflatoxins B1(AFB1)contamination in agro-food holds great threaten to human and animal health.Conventional test strips for rapid AFB1 visualized monitoring remains challenged by improvement of sensitivity and matrix i... Aflatoxins B1(AFB1)contamination in agro-food holds great threaten to human and animal health.Conventional test strips for rapid AFB1 visualized monitoring remains challenged by improvement of sensitivity and matrix interference resistance.In this case,we developed a portable electrochemiluminescence(ECL)imaging test strip with dual-signal outputs for AFB1 quantification in corn samples.RuPEI@SiO_(2)@Au nanospheres were synthesized for bonding with anti-AFB1 antibody and then colorimetrical signal-reported on test line through the capillary flow at strips.Meanwhile,ECL imaging signal of the constructed carbon-ink-based working electrode on polyvinyl chloride substrate of strips was exported under an applied potential of 1.25 V.The whole ECL test strips not only endowed convenient colorimetric responses but guaranteed quick-witted ECL image distinguishment even at extremely low AFB1 content.The detection limit of this ECL imaging-integrated mode was 10-fold lower than that of only colorimetric mode.Furthermore,satisfactory selectivity,reliability and practicability of the as-proposed ECL test strips were demonstrated.This work offered a promising platform for on-site,accurate and sensitive detection of pollutants in foods. 展开更多
关键词 Electrochemiluminescence imaging test strips Nanomaterials Dual-signal outputs Aflatoxin B1 Food safety
原文传递
Thin layer identification using a theoretical X-ray logging while drilling(LWD)density imaging tool
7
作者 Wen-Bin He Ji-Lin Fan +3 位作者 Qiong Zhang Ya Jin Wei Yuan Quan-Wen Zhang 《Petroleum Science》 2025年第6期2403-2413,共11页
With the increasing demand for oil exploration and subsurface resource development,density imaging plays an increasingly important role in identifying thin layers.However,conventional density imaging tools are limited... With the increasing demand for oil exploration and subsurface resource development,density imaging plays an increasingly important role in identifying thin layers.However,conventional density imaging tools are limited by poor vertical resolution and therefore suffer from errors in accurately estimating the thickness and relative dip angle of thin layers.This affects the accurate evaluation of thin layer oil and gas reserves.To address this issue,this study evaluates the feasibility of employing novel methods based on advanced tool design.First,an electronically controllable X-ray source is selected to replace the traditional Cs-137 source,aiming to improve the tool's vertical resolution while reducing the radioactive risks commonly associated with chemical sources.Simulation results show that the X-ray tool provides sufficient depth of investigation with better vertical resolution while maintaining the same level of measurement sensitivity.Once the tool design is established,Fisher's optimal segmentation method is improved to enhance the estimation of thin layer thickness and relative dip angle.This is completed by transforming identifying thin layer interface into a mathematical clustering problem.The thin layer interface is fitted using the nonlinear least squares method,which enables the calculation of its parameters.The results demonstrate a 38.5%reduction in RMSE(root mean square error)for thin layer thickness and a 33.7%reduction in RMSE for relative dip angle,demonstrating the superior performance of enhanced X-ray tool in thin layer identification.This study provides a new perspective on the design of density imaging tools and assessment of thin layer,which can help in future thin layer hydrocarbon reserves evaluation and development decisions. 展开更多
关键词 LWD density imaging x-ray tool design Thin layer identification
原文传递
Parallax-free panoramic X-ray imaging combined with minimally invasive plate osteosynthesis for treating proximal humeral shaft fractures
8
作者 Wen-Jing Cheng Jing-Shun Lu +2 位作者 Zhou-Shan Tao Jia-Bing Xie Min Yang 《World Journal of Orthopedics》 2025年第5期44-50,共7页
BACKGROUND The objective of this study was to evaluate the use of combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with minimally invasive plate osteosynthesis(MIPO)in the man... BACKGROUND The objective of this study was to evaluate the use of combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with minimally invasive plate osteosynthesis(MIPO)in the management of proximal humeral shaft fractures.AIM To evaluate parallax-free panoramic X-ray images during surgery.METHODS A retrospective series of 17 proximal humeral shaft fractures were treated using combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with MIPO.The operating time and radiation exposure time were recorded,and early postoperative physical therapy and partial weight bearing were encouraged.Patients were followed at regular intervals and evaluated radiographically and clinically.RESULTS The mean operating time and radiation time were 73(range,49-95)minutes and 57(range:36-98)seconds,respectively.No complications occurred during the operation.All fractures healed at an average of 16.9(range:15-23)weeks.The average Constant-Murley score for all the patients was 89.5(range:75-100)points.None of the patients showed symptoms of vascular or nerve damage or wound infection.Three months after the operation,none of the patients developed subacromial impingement syndrome.No loosening or fracture of the implants occurred.The frontal and lateral radiographs showed good alignment.CONCLUSION We consider that MIPO with combined parallax-free panoramic X-ray imaging during surgery is an efficient method for treating proximal humeral shaft fractures,and could significantly reduce operative morbidity as well as lower the rate of intra-and postoperative complications. 展开更多
关键词 Minimally invasive plate osteosynthesis Proximal humeral shaft fractures Panoramic x-ray images COMPLICATIONS
暂未订购
Attention U-Net for Precision Skeletal Segmentation in Chest X-Ray Imaging:Advancing Person Identification Techniques in Forensic Science
9
作者 Hazem Farah Akram Bennour +3 位作者 Hama Soltani Mouaaz Nahas Rashiq Rafiq Marie Mohammed Al-Sarem 《Computers, Materials & Continua》 2025年第11期3335-3348,共14页
This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhance... This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhanced with gated attention mechanisms,to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details.By isolating skeletal structures which remain stable over time compared to soft tissues,this method leverages bones as reliable biometric markers for identity verification.The model integrates custom-designed encoder and decoder blocks with attention gates,achieving high segmentation precision.To evaluate the impact of architectural choices,we conducted an ablation study comparing Attention U-Net with and without attentionmechanisms,alongside an analysis of data augmentation effects.Training and evaluation were performed on a curated chest X-ray dataset,with segmentation performance measured using Dice score,precision,and loss functions,achieving over 98% precision and 94% Dice score.The extracted bone structures were further processed to derive unique biometric patterns,enabling robust and privacy-preserving person identification.Our findings highlight the effectiveness of attentionmechanisms in improving segmentation accuracy and underscore the potential of chest bonebased biometrics in forensic and medical imaging.This work paves the way for integrating artificial intelligence into real-world forensic workflows,offering a non-invasive and reliable solution for post-mortem identification. 展开更多
关键词 Bone extraction segmentation of skeletal structures chest x-ray images person identification deep learning attention mechanisms U-Net
在线阅读 下载PDF
Feasibility Study for Applying Spectral Imaging for Wheat Grain Authenticity Testing in Pasta 被引量:4
10
作者 Timothy Wilkes Gavin Nixon +3 位作者 Claire Bushell Adrian Waltho Amer Alroichdi Malcolm Burns 《Food and Nutrition Sciences》 2016年第5期355-361,共7页
Authentication of pasta is currently determined using molecular biology-based techniques focusing on DNA as the target analyte. Whilst proven to be effective, these approaches can be criticised as being destructive, t... Authentication of pasta is currently determined using molecular biology-based techniques focusing on DNA as the target analyte. Whilst proven to be effective, these approaches can be criticised as being destructive, time consuming, and requiring specialist instrument training. Advances in the field of multispectral imaging (MSI) and hyperspectral imaging (HSI) have facilitated the development of compact imaging platforms with the capability to rapidly differentiate a range of materials (inclusive of grains and seeds) based on surface colour, texture and chemical composition. This preliminary investigation evaluated the applicability of spectral imaging for identification and quantitation of durum wheat grain samples in relation to pasta authenticity. MSI and HSI were capable of rapidly distinguishing between durum wheat and adulterant common wheat cultivars and assigning percentage adulteration levels characterised by low biases and good repeatability estimates. The results demonstrated the potential for spectral imaging based seed/grain adulteration testing to augment existing standard molecular approaches for food authenticity testing. 展开更多
关键词 Spectral imaging Multispectral imaging Hyperspectral imaging Durum Wheat Authentication Rapid Non-Destructive testing Food Adulteration
在线阅读 下载PDF
Recent developments in photoacoustic imaging and sensing for nondestructive testing and evaluation 被引量:3
11
作者 Sung-Liang Chen Chao Tian 《Visual Computing for Industry,Biomedicine,and Art》 EI 2021年第1期50-62,共13页
Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial app... Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial applications.This paper describes the basic principles of PA technology for NDT/E and its applications in recent years.PA technology for NDT/E includes the use of a modulated continuous-wave laser and a pulsed laser for PA wave excitation,PA-generated ultrasonic waves,and all-optical PA wave excitation and detection.PA technology for NDT/E has demonstrated broad applications,including the imaging of railway cracks and defects,the imaging of Li metal batteries,the measurements of the porosity and Young’s modulus,the detection of defects and damage in silicon wafers,and a visualization of underdrawings in paintings. 展开更多
关键词 Photoacoustic imaging Photoacoustic sensing Nondestructive testing Nondestructive evaluation Photoacoustic microscopy
在线阅读 下载PDF
Methodology development and application of X-ray imaging beamline at SSRF 被引量:12
12
作者 Hong-Lan Xie Biao Deng +7 位作者 Guo-Hao Du Ya-Nan Fu Han Guo Yan-Ling Xue Guan-Yun Peng Fen Tao Ling Zhang Ti-Qiao Xiao 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第10期74-94,共21页
This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline(BL13W1)at Shanghai Synchrotron Radiation Facility in the... This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline(BL13W1)at Shanghai Synchrotron Radiation Facility in the past 5 years.The photon energy range of the beamline is 8–72.5 keV.Several sets of X-ray imaging detectors with different pixel sizes(0.19–24 lm)are used to realize X-ray microcomputed tomography(X-ray micro-CT)and X-ray in-line phase-contrast imaging.To satisfy the requirements of user experiments,new X-ray imaging methods and image processing techniques are developed.In vivo dynamic micro-CT experiments with living insects are performed in 0.5 s(sampling rate of 2 Hz,2 tomograms/s)with a monochromatic beam from a wiggler source and in 40 ms(sampling rate of 25 Hz,25 tomograms/s)with a white beam from a bending magnet source.A new X-ray imaging method known as move contrast X-ray imaging is proposed,with which blood flow and moving tissues in raw images can be distinguished according to their moving frequencies in the time domain.Furthermore,X-ray speckle-tracking imaging with twice exposures to eliminate the edge enhancement effect is developed.A high-precision quantification method is realized to measure complex three-dimensional blood vessels obtained via X-ray micro-CT.X-ray imaging methods such as three-dimensional X-ray diffraction microscopy,small-angle X-ray scattering CT,and X-ray fluorescence CT are developed,in which the X-ray micro-CT imaging method is combined with other contrast mechanisms such as diffraction,scattering,and fluorescence contrasts respectively.Moreover,an X-ray nano-CT experiment is performed with a 100 nm spatial resolution.Typical user experimental results from the fields of material science,biomedicine,paleontology,physics,chemistry,and environmental science obtained on the beamline are provided. 展开更多
关键词 x-ray imaging x-ray in-line phase-contrast imaging x-ray micro-CT Dynamic micro-CT x-ray speckle-tracking imaging 3DXRD SAXS-CT x-ray fluorescence CT x-ray nano-CT Move contrast x-ray imaging
在线阅读 下载PDF
A fast and adaptive method for automatic weld defect detection in various real-time X-ray imaging systems 被引量:10
13
作者 邵家鑫 都东 +2 位作者 石涵 常保华 郭桂林 《China Welding》 EI CAS 2012年第1期8-12,共5页
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me... A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems. 展开更多
关键词 non-destructive testing real-time x-ray imaging weld defect automatie detection
在线阅读 下载PDF
Combined molybdenum target X-ray and magnetic resonance imaging examinations improve breast cancer diagnostic efficacy 被引量:26
14
作者 Wen-Quan Gu Sun-Mei Cai +3 位作者 Wei-Dong Liu Qi Zhang Ying Shi Li-Juan Du 《World Journal of Clinical Cases》 SCIE 2022年第2期485-491,共7页
BACKGROUND Early-stage breast cancer patients often lack specific clinical manifestations,making diagnosis difficult.Molybdenum target X-ray and magnetic resonance imaging(MRI)examinations both have their own advantag... BACKGROUND Early-stage breast cancer patients often lack specific clinical manifestations,making diagnosis difficult.Molybdenum target X-ray and magnetic resonance imaging(MRI)examinations both have their own advantages.Thus,a combined examination methodology may improve early breast cancer diagnoses.AIM To explore the combined diagnostic efficacy of molybdenum target X-ray and MRI examinations in breast cancer.METHODS Patients diagnosed with breast cancer at our hospital from March 2019 to April 2021 were recruited,as were the same number of patients during the same period with benign breast tumors.Both groups underwent molybdenum target X-ray and MRI examinations,and diagnoses were given based on each exam.The single(i.e.,X-ray or MRI)and combined(i.e.,using both methods)diagnoses were counted,and the MRI-related examination parameters(e.g.,T-wave peak,peak and early enhancement rates,and apparent diffusion coefficient)were compared between the groups.RESULTS In total,63 breast cancer patients and 63 benign breast tumor patients were recruited.MRI detected 53 breast cancer cases and 61 benign breast tumor cases.Molybdenum target X-ray detected 50 breast cancer cases and 60 benign breast tumor cases.The combined methodology detected 61 breast cancer cases and 61 benign breast tumor cases.The sensitivity(96.83%)and accuracy(96.83%)of the combined methodology were higher than single-method MRI(84.13%and 90.48%,respectively)and molybdenum target X-ray(79.37%and 87.30%,respectively)(P<0.05).The combined methodology specificity(96.83%)did not differ from singlemethod MRI(96.83%)or molybdenum target X-ray(95.24%)(P>0.05).The Twave peak(169.43±32.05)and apparent diffusion coefficient(1.01±0.23)were lower in the breast cancer group than in the benign tumor group(228.86±46.51 and 1.41±0.35,respectively).However,the peak enhancement rate(1.08±0.24)and early enhancement rate(1.07±0.26)were significantly higher in the breast cancer group than in the benign tumor group(0.83±0.19 and 0.75±0.19,respectively)(P<0.05).CONCLUSION Combined molybdenum target X-ray and MRI examinations for diagnosing breast cancer improved the diagnostic sensitivity and accuracy,minimizing the missedand misdiagnoses risks and promoting timely treatment intervention. 展开更多
关键词 MOLYBDENUM x-rays Magnetic resonance imaging Breast neoplasms Early diagnosis RADIOLOGY
暂未订购
Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing:A Review 被引量:6
15
作者 Naying An Sansan Shuai +3 位作者 Tao Hu Chaoyue Chen Jiang Wang Zhongming Ren 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第1期25-48,共24页
Additive manufacturing(AM)is a rapid prototyping technology based on the idea of discrete accumulation which off ers an advantage of economically fabricating a component with complex geometries in a rapid design-to-ma... Additive manufacturing(AM)is a rapid prototyping technology based on the idea of discrete accumulation which off ers an advantage of economically fabricating a component with complex geometries in a rapid design-to-manufacture cycle.However,various internal defects,such as balling,cracks,residual stress and porosity,are inevitably occurred during AM due to the complexity of laser/electron beam-powder interaction,rapid melting and solidification process,and microstructure evolution.The existence of porosity defects can potentially deteriorate the mechanical properties of selective laser melting(SLM)components,such as material stiff ness,hardness,tensile strength,and fatigue resistance performance.Synchrotron X-ray imaging and diffraction are important non-destructive means to elaborately characterize the internal defect characteristics and mechanical properties of AM parts.This paper presents a review on the application of synchrotron X-ray in identifying and verifying the quality and requirement of AM parts.Defects,microstructures and mechanical properties of printed components characterized by synchrotron X-ray imaging and diffraction are summarized in this review.Subsequently,this paper also elaborates on the online characterization of the evolution of the microstructure during AM using synchrotron X-ray imaging,and introduces the method for measuring AM stress by X-ray diffraction(XRD).Finally,the future application of synchrotron X-ray characterization in the AM is prospected. 展开更多
关键词 Additive manufacturing Synchrotron x-ray imaging x-ray diffraction Defect formation Mechanical properties Residual stress
原文传递
Ultra-stable CsPbBr3 Perovskite Nanosheets for X-Ray Imaging Screen 被引量:6
16
作者 Liangling Wang Kaifang Fu +3 位作者 Ruijia Sun Huqiang Lian Xun Hu Yuhai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期263-270,共8页
Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low che... Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low chemical yield hinders their upscale production for practical use.Meanwhile,the labile nature of halide-based perovskite poses a major challenge for long-term storage of perovskite nanocrystals.Herein,we report a green synthesis at room temperature for gram-scale production of CsPbBr3 nanosheets with minimum use of solvent,saving over 95% of the solvent for the unity mass nanocrystal production.The perovskite colloid exhibits record stability upon long-term storage for up to 8 months,preserving a photoluminescence quantum yield of 63% in solid state.Importantly,the colloidal nanosheets show self-assembly behavior upon slow solidification,generating a crack-free thin film in a large area.The uniform film was then demonstrated as an efficient scintillation screen for X-ray imaging.Our findings bring a scalable tool for synthesis of high-quality perovskite nanocrystals,which may inspire the industrial optoelectronic application of large-area perovskite film. 展开更多
关键词 CsPbBr3 PEROVSKITE NANOSHEETS SELF-ASSEMBLY x-ray imaging SCREEN
在线阅读 下载PDF
Hydrophobic long-chain two-dimensional perovskite scintillators for underwater X-ray imaging 被引量:3
17
作者 Jin-Xiao Zheng Zi-An Zhou +6 位作者 Tiao Feng Hui Li Cheng-Hua Sun NüWang Yang Tian Yong Zhao Shu-Yun Zhou 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期175-185,共11页
The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging... The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development. 展开更多
关键词 Two-dimensional perovskite HYDROPHOBIC SCINTILLATORS Underwater x-ray imaging Underwater nondestructive testing technology
原文传递
Recent Progress of Synchrotron X-Ray Imaging and Diffraction on the Solidification and Deformation Behavior of Metallic Materials 被引量:5
18
作者 Youhong Peng Kesong Miao +4 位作者 Wei Sun Chenglu Liu Hao Wu Lin Geng Guohua Fan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第1期3-24,共22页
Characterizing the microstructure and deformation mechanism associated with the performances and properties of metallic materials is of great importance in understanding the microstructure-property relationship.The pa... Characterizing the microstructure and deformation mechanism associated with the performances and properties of metallic materials is of great importance in understanding the microstructure-property relationship.The past few decades have witnessed the rapid development of characterization techniques from optical microscopy to electron microscopy,although these conventional methods are generally limited to the sample surface because of the intrinsic opaque nature of metallic materials.Advanced synchrotron radiation(SR)facilities can produce X-rays with strong penetrability and high spatiotemporal resolution,and thereby enabling the non-destructive visualization of full-field structural information in three dimensions.Tremendous endeavors were devoted to the 3 rd generation SR over the past three decades,in which X-ray beams have been focused down to 100 nm.In this paper,recent progresses on SR-related characterization technologies were reviewed,with particular emphases on the fundamentals of synchrotron X-ray imaging and synchrotron X-ray diffraction,as well as their applications in the in situ observations of material preparation(e.g.,in situ dendrite growth during solidification)and service under extreme environment(e.g.,in situ mechanics).Future innovations toward next-generation SR and newly emerging SRbased technologies such as dark-field X-ray microscopy and Bragg coherent X-ray diffraction imaging were also advocated. 展开更多
关键词 Synchrotron radiation Synchrotron x-ray imaging Synchrotron x-ray diffraction Metallic alloys
原文传递
Calibrating the linearity between grayscale and element content for X-ray KES imaging of alloys 被引量:5
19
作者 Xiao-Lu Ju Biao Deng +7 位作者 Ke Li Fu-Cheng Yu Hai-Peng Zhang Ming-Wei Xu Guo-Hao Du Hong-Lan Xie Bin Li Ti-Qiao Xiao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第1期1-12,共12页
Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor pene... Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor penetration ability.The X-ray K-edge subtraction(KES)method exhibits great potential for the nondestructive in situ detection of element contents in alloys.However,the signal of doped elements usually deteriorates because of the strong absorption of the principal component and scattering of crystal grains.This in turn prevents the extensive application of X-ray KES imaging to alloys.In this study,methods were developed to calibrate the linearity between the grayscale of the KES image and element content.The methods were aimed at the sensitive analysis of elements in alloys.Furthermore,experiments with phantoms and alloys demonstrated that,after elaborate calibration,X-ray KES imaging is capable of nondestructive and sensitive analysis of doped elements in alloys. 展开更多
关键词 x-ray KES imaging Grayscale calibration Element analysis for alloy Nondestructive imaging of elements
在线阅读 下载PDF
Illuminations for constructions of scintillating lanthanide–organic complexes in sensitive X-ray detection and high-resolution radiative imaging 被引量:4
20
作者 Juan Gao Jian Lu +5 位作者 Baoyi Li Wenfei Wang Meijuan Xie Shuaihua Wang Fakun Zheng Guocong Guo 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第12期5132-5136,共5页
X-ray detection and imaging via scintillators has been utilized in missions worldwide within areas of scientific research,medical industry,military defense and homeland security.Commercial scintillators are costly wit... X-ray detection and imaging via scintillators has been utilized in missions worldwide within areas of scientific research,medical industry,military defense and homeland security.Commercial scintillators are costly with high energy consumption through the sintering.It is of great significance to seek alternative scintillating materials for sensitive X-ray detection in the next-generation.Herein,eight structure-defined Ln(Ⅲ)-based metal-organic frameworks(Ln-MOFs)were prepared,2D[Ln_(2)(1,4-ndc)_(3)(DMF)_(4)]_(n)·nH_(2)O(Ln=Sm 1,Eu 2,Dy 3,Tb 4)and 3D[Ln_(4)(2,6-ndc)_(6)(μ_(2)H_(2)O)2(H_(2)O)_(4)]n·2nH_(2)O(Ln=Sm 5,Eu 6,Dy 7,Tb 8),where 1,4-H_(2)ndc=1,4-naphthalene dicarboxylate acid,2,6-H_(2)ndc=2,6-napthalene dicarboxylate acid,DMF=N,N-dimethylformamide.Merely compounds 2 and 6 show remarkable X-ray scintillation performance via the characteristic red emissions of Eu(Ⅲ)ions,in which the absorbed energy from the triplet states of the organic moieties can be transferred more efficiently to the resonance emission levels of Eu(Ⅲ)ions than other lanthanide(Ⅲ)ions.The X-ray dosage rate detection limits of 2 and 6 are superior to the standard for the medical X-ray diagnosis dosage rate.As proofs-of-concepts,matrix-mixed membranes fabricated with 2 and 6 have achieved remarkable X-ray imaging with high resolution for practical object shooting. 展开更多
关键词 Scintillating materials Metal–organic frameworks Lanthanide coordination compounds x-ray detection x-ray imaging
原文传递
上一页 1 2 201 下一页 到第
使用帮助 返回顶部