A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me...A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
A precise knowledge of geometry is always pivotal to a 3-D X-ray imaging system,such as computed tomography(CT),digital X-ray tomosynthesis,and computed laminography.To get an accurate and reliable reconstruction imag...A precise knowledge of geometry is always pivotal to a 3-D X-ray imaging system,such as computed tomography(CT),digital X-ray tomosynthesis,and computed laminography.To get an accurate and reliable reconstruction image,exact knowledge of geometry is indispensable.Nowadays,geometric calibration has become a necessary step after completing CT system installation.Various geometric calibration methods have been reported with the fast development of 3-D X-ray imaging techniques.In these methods,different measuring methods,calibration phantoms or markers,and calculation algorithms were involved with their respective advantages and disadvantages.This paper reviews the history and current state of geometric calibration methods for different3-D X-ray imaging systems.Various calibration algorithms are presented and summarized,followed by our discussion and outlook.展开更多
Scintillator-mediated indirect X-ray detectors,which transduce high-energy X-ray photons into detectable visible light,underpin critical applications in medical diagnostics,non-destructive imaging,and high-energy phys...Scintillator-mediated indirect X-ray detectors,which transduce high-energy X-ray photons into detectable visible light,underpin critical applications in medical diagnostics,non-destructive imaging,and high-energy physics.Flexible scintillator films represent a transformative advancement for next-generation X-ray imaging,enabling conformal integration biological tissues and complex geometries.The pursuit of solution-processed scintillators with benchmark light yield,ultralow detection limit,and superior mechanical robustness constitutes the primary objective in this field.This review comprehensively analyzes emerging high-performance scintillators,including lanthanide-doped nanocrystals,organic emitters,perovskites,metal-organic frameworks(MOFs),atomically metal clusters,and metal-organic complexes,focusing on strategies to enhance radioluminescence yield,minimize detection limits,and achieve mechanical robustness.We elucidate carrier dynamics from exciton formation to radiative recombination,alongside advanced fabrication paradigms for flexible/stretchable films via polymer encapsulation and intrinsically flexible designs.The resulting devices demonstrate exceptional capabilities in static,dynamic,and multifunctional imaging under ultralow doses.Critical frontiers in radiation stability,artificial intelligence(AI)-accelerated material discovery,and light propagation engineering are outlined to guide future detector development.展开更多
Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing car...Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing carefully designed cells that approximate the structural characteristics of practical batteries,we revisit this widely held view through in-operando X-ray radiography to examine zinc dendrite formation and HER under nearpractical operating conditions.While conventional understanding emphasizes the severity of these processes,our findings suggest that zinc dendrites and HER are noticeably less pronounced in dense,real-operation configurations compared to modified cells,possibly due to a more uniform electric field and the suppression of triple-phase boundaries.This study indicates that other components,such as degradation at the cathode current collector interface and configuration mismatches within the full cell,may also represent important barriers to the practical application of AZMBs,particularly during the early stages of electrodeposition.展开更多
A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-d...A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-dimensional cusp boundary from a two-dimensional X-ray image because the detected X-ray signals will be integrated along the line of sight.In this work,a global magnetohydrodynamic code was used to simulate the X-ray images and photon count images,assuming an interplanetary magnetic field with a pure Bz component.The assumption of an elliptic cusp boundary at a given altitude was used to trace the equatorward and poleward boundaries of the cusp from a simulated X-ray image.The average discrepancy was less than 0.1 RE.To reduce the influence of instrument effects and cosmic X-ray backgrounds,image denoising was considered before applying the method above to SXI photon count images.The cusp boundaries were reasonably reconstructed from the noisy X-ray image.展开更多
Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method...Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method,an indirect imaging technique that requires algorithms to reconstruct and optimize images.During the last decade,a variety of algorithms have been developed and improved.However,it is difficult to quantitatively evaluate the image quality of different solutions without a true,reference image of observation.How to choose the values of imaging parameters for these algorithms to get the best performance is also an open question.In this study,we present a detailed test of the characteristics of these algorithms,imaging dynamic range and a crucial parameter for the CLEAN method,clean beam width factor(CBWF).We first used SDO/AIA EUV images to compute DEM maps and calculate thermal X-ray maps.Then these realistic sources and several types of simulated sources are used as the ground truth in the imaging simulations for both RHESSI and ASO-S/HXI.The different solutions are evaluated quantitatively by a number of means.The overall results suggest that EM,PIXON,and CLEAN are exceptional methods for sidelobe elimination,producing images with clear source details.Although MEM_GE,MEM_NJIT,VIS_WV and VIS_CS possess fast imaging processes and generate good images,they too possess associated imperfections unique to each method.The two forward fit algorithms,VF and FF,perform differently,and VF appears to be more robust and useful.We also demonstrated the imaging capability of HXI and available HXI algorithms.Furthermore,the effect of CBWF on image quality was investigated,and the optimal settings for both RHESSI and HXI were proposed.展开更多
This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhance...This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhanced with gated attention mechanisms,to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details.By isolating skeletal structures which remain stable over time compared to soft tissues,this method leverages bones as reliable biometric markers for identity verification.The model integrates custom-designed encoder and decoder blocks with attention gates,achieving high segmentation precision.To evaluate the impact of architectural choices,we conducted an ablation study comparing Attention U-Net with and without attentionmechanisms,alongside an analysis of data augmentation effects.Training and evaluation were performed on a curated chest X-ray dataset,with segmentation performance measured using Dice score,precision,and loss functions,achieving over 98% precision and 94% Dice score.The extracted bone structures were further processed to derive unique biometric patterns,enabling robust and privacy-preserving person identification.Our findings highlight the effectiveness of attentionmechanisms in improving segmentation accuracy and underscore the potential of chest bonebased biometrics in forensic and medical imaging.This work paves the way for integrating artificial intelligence into real-world forensic workflows,offering a non-invasive and reliable solution for post-mortem identification.展开更多
In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean inten...In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.展开更多
BACKGROUND The objective of this study was to evaluate the use of combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with minimally invasive plate osteosynthesis(MIPO)in the man...BACKGROUND The objective of this study was to evaluate the use of combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with minimally invasive plate osteosynthesis(MIPO)in the management of proximal humeral shaft fractures.AIM To evaluate parallax-free panoramic X-ray images during surgery.METHODS A retrospective series of 17 proximal humeral shaft fractures were treated using combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with MIPO.The operating time and radiation exposure time were recorded,and early postoperative physical therapy and partial weight bearing were encouraged.Patients were followed at regular intervals and evaluated radiographically and clinically.RESULTS The mean operating time and radiation time were 73(range,49-95)minutes and 57(range:36-98)seconds,respectively.No complications occurred during the operation.All fractures healed at an average of 16.9(range:15-23)weeks.The average Constant-Murley score for all the patients was 89.5(range:75-100)points.None of the patients showed symptoms of vascular or nerve damage or wound infection.Three months after the operation,none of the patients developed subacromial impingement syndrome.No loosening or fracture of the implants occurred.The frontal and lateral radiographs showed good alignment.CONCLUSION We consider that MIPO with combined parallax-free panoramic X-ray imaging during surgery is an efficient method for treating proximal humeral shaft fractures,and could significantly reduce operative morbidity as well as lower the rate of intra-and postoperative complications.展开更多
This study explores the application of X-ray-induced photochromism and photoluminescence in optical storage,anti-counterfeiting,non-destructive testing,and high-resolution X-ray detection and imaging.Ba_(2)LaNbO_(6):B...This study explores the application of X-ray-induced photochromism and photoluminescence in optical storage,anti-counterfeiting,non-destructive testing,and high-resolution X-ray detection and imaging.Ba_(2)LaNbO_(6):Bi,Eu phosphors were synthesized,with Bi enhancing X-ray-induced photochromic prop-erties.Under X-ray irradiation,the phosphors transfer from white to red in bright field conditions and emit red photoluminescence in dark field conditions.Exposure to 470 nm ultraviolet light induces rapid bleaching.The mechanisms of photochromism and photoluminescence,particularly Bi's role as a colorant,were systematically investigated.The Ba_(2)LaNbO_(6):Bi,Eu phosphors film achieves high resolution,high-lighting its potential for X-ray imaging and non-destructive testing.Furthermore,the flexible Ba_(2)LaNbO_(6):Bi,Eu film supports dual-mode imaging and detection,addressing the limitations of traditional flat dis-plays in 3D imaging.展开更多
Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly diffic...Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.展开更多
We present a prototype for hybrid Compton and positron emission tomography(PET)imaging aimed at enhancing data utilization and enabling concurrent imaging of multiple radiopharmaceuticals.The prototype comprises two d...We present a prototype for hybrid Compton and positron emission tomography(PET)imaging aimed at enhancing data utilization and enabling concurrent imaging of multiple radiopharmaceuticals.The prototype comprises two detectors that utilize LYSO-SiPM and were available in our laboratory.One detector consists of a 50×50 array of LYSO crystals,each measuring 0.9mm×0.9mm×10mm with 1 mm pitches,whereas the other detector comprises a 25×25 array of LYSO crystals,each measuring 1.9mm×1.9mm×10mm with 2 mm pitches.These detectors are mounted on a rotational stage,which enables them to function as either a Compton camera or a PET detector pair.The 64-channel signals from the SiPMs of each detector are processed through a capacitive multiplexing circuit to yield four position-weighted outputs.Distinct energy windows were used to discriminate Compton events from PET events.Energy resolution and energy-channel relationships were calibrated via multiple sources.The measured average energy resolutions(full widths at half maximum,FWHMs)for the detectors at 511 keV were 17.5%and 15.2%,respectively.The initial experimental results indicate an angular resolution(FWHM)of 8.6◦for the system in Compton imaging mode.A V-shaped tube injected with 18 F solution was clearly reconstructed,which further verified the imaging capabilities of the system in Compton imaging mode.The results of simulation and experimental imaging studies show that the system can detect tumors as small as 1 mm in diameter when working in PET imaging mode.Mouse bone PET imaging was successfully conducted,with the results matching well with the corresponding CT images.This technology holds great potential for advancing the development of physiological function modalities.展开更多
Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience...Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.展开更多
With the increasing demand for oil exploration and subsurface resource development,density imaging plays an increasingly important role in identifying thin layers.However,conventional density imaging tools are limited...With the increasing demand for oil exploration and subsurface resource development,density imaging plays an increasingly important role in identifying thin layers.However,conventional density imaging tools are limited by poor vertical resolution and therefore suffer from errors in accurately estimating the thickness and relative dip angle of thin layers.This affects the accurate evaluation of thin layer oil and gas reserves.To address this issue,this study evaluates the feasibility of employing novel methods based on advanced tool design.First,an electronically controllable X-ray source is selected to replace the traditional Cs-137 source,aiming to improve the tool's vertical resolution while reducing the radioactive risks commonly associated with chemical sources.Simulation results show that the X-ray tool provides sufficient depth of investigation with better vertical resolution while maintaining the same level of measurement sensitivity.Once the tool design is established,Fisher's optimal segmentation method is improved to enhance the estimation of thin layer thickness and relative dip angle.This is completed by transforming identifying thin layer interface into a mathematical clustering problem.The thin layer interface is fitted using the nonlinear least squares method,which enables the calculation of its parameters.The results demonstrate a 38.5%reduction in RMSE(root mean square error)for thin layer thickness and a 33.7%reduction in RMSE for relative dip angle,demonstrating the superior performance of enhanced X-ray tool in thin layer identification.This study provides a new perspective on the design of density imaging tools and assessment of thin layer,which can help in future thin layer hydrocarbon reserves evaluation and development decisions.展开更多
Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in hu...Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.展开更多
A 100-channel double-foil soft X-ray array imaging(DSXAI)diagnostic system has been developed for the HL-2A tokamak to obtain tomographic bremsstrahlung emissivity and electron temperature(T_(e)).This system employs a...A 100-channel double-foil soft X-ray array imaging(DSXAI)diagnostic system has been developed for the HL-2A tokamak to obtain tomographic bremsstrahlung emissivity and electron temperature(T_(e)).This system employs a double-foil technique to determine T_(e) by comparing the soft X-ray(SXR)emissivities from the same plasma location through two beryllium(Be)foils of differing thickness.The DSXAI system comprises five photocameras mounted at two different poloidal cross-sections,separated toroidally by 15°,allowing for three distinct poloidal viewing angles.Each photocamera features 20 channels,offering a temporal resolution of approximately 4μs and a spatial resolution of about 8 cm,with no channel overlap.Each photocamera contains two identical optical systems,each defined by an aperture slit and a photodiode array.The double-foil configuration is realized by placing these two optical systems,each with a different Be foil,in close proximity.Initial experimental results demonstrate that the DSXAI diagnostic system performs well,successfully reconstructing 2-dimensional(2D)tomographic SXR emissivity and T_(e) on the HL-2A tokamak.This study provides valuable insights for the future implementation of similar diagnostic systems on fusion reactors like ITER.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
Transcatheter arterial embolization(TAE)is the mainstay for treating advanced hepatocellular carcinoma(HCC),and the performance of the embolization material is crucial in TAE.With the development of medical imaging an...Transcatheter arterial embolization(TAE)is the mainstay for treating advanced hepatocellular carcinoma(HCC),and the performance of the embolization material is crucial in TAE.With the development of medical imaging and the birth of“X-ray-free”technologies,we designed a new dual-mode imaging material of dimethoxy tetraphenyl ethylene(DMTPE)via emulsification by mixing poly(N-isopropylacrylamide-co-acrylic acid)(PNA)with lipiodol and fluorocarbons,which was evaluated for temperature sensitivity,stability,and dual-mode visualization in vitro.Additionally,blood vessel casting embolization and renal artery imaging were assessed in healthy rabbits.In a rabbit model with a VX2 tumor,the effectiveness of TAE for treating HCC was examined,with an emphasis on evaluating long-term outcomes of embolization and its effects on tumor growth,necrosis,and proliferation through imaging techniques.In vitro experiments confirmed that the temperature-sensitive dual-oil-phase Pickering emulsion had good flow,stable contrast,and embolism when the oil-to-oil ratio and water-to-oil ratio were both 7:3(v/v)and stabilized with 8%PNA.Similarly,in vivo,arterial embolization confirmed the excellent properties of DMTPE prepared at the abovementioned ratios.It was observed that DMTPE not only has an antitumor effect but can also achieve dual imaging using X-rays and ultrasound,making it a promising excellent vascular embolization material for TAE in tumor treatment.展开更多
Scintillator is a key material for the development of X-ray detectors,which has a promising application in medical imaging,security inspection and industrial non-injury detection.The majority of scintillators currentl...Scintillator is a key material for the development of X-ray detectors,which has a promising application in medical imaging,security inspection and industrial non-injury detection.The majority of scintillators currently used in imaging are real-time imaging scintillators,which can cause ionization radiation damage to biological subjects or detection equipment during the imaging process and require complex,highly sensitive detection systems.Therefore,exploring stable,environmentally friendly scintillator materials that can achieve delayed imaging is of significance in the field of imaging.Herein,we devel-oped an X-ray time-lapse imaging scintillator,Sr_(2)Al_(6)O_(11):Dy^(3+)phosphor,which generates stable traps by X-ray irradiation,thus endowing it with excellent persistent luminescence and information storage properties(>42 d).Moreover,traps constructed by X-ray can be repeatedly refilled(>40 times)under UV light and carriers are released in theform of mechanical or thermal excitation when refilling is complete.By constructing the traps in the phosphor during X-ray excitation and using it for repetitive imaging,the detection limit is 74.78 nGy/s,and the spatial imaging resolution is as high as 16 lp/mm.This discovery providesa new idea for the development oftime-delayed X-ray scintillator.展开更多
文摘A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
基金supported by the National Natural Science Foundation of China(No.81427803 and 61571256)the Beijing Excellent Talents Training Foundation(No.2013D009004000004)
文摘A precise knowledge of geometry is always pivotal to a 3-D X-ray imaging system,such as computed tomography(CT),digital X-ray tomosynthesis,and computed laminography.To get an accurate and reliable reconstruction image,exact knowledge of geometry is indispensable.Nowadays,geometric calibration has become a necessary step after completing CT system installation.Various geometric calibration methods have been reported with the fast development of 3-D X-ray imaging techniques.In these methods,different measuring methods,calibration phantoms or markers,and calculation algorithms were involved with their respective advantages and disadvantages.This paper reviews the history and current state of geometric calibration methods for different3-D X-ray imaging systems.Various calibration algorithms are presented and summarized,followed by our discussion and outlook.
基金supported by the National Natural Science Foundation of China(Nos.52533008,22205104,22305127,and 21835003)the National Key Research and Development Program of China(Nos.2024YFB3612500,2024YFB3612600,and 2023YFB3608900)+2 种基金Basic Research Program of Jiangsu Province(No.BK20243057)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Nos.NY222078 and NY222079)Project of State Key Laboratory of Organic Electronics and Information Displays(Nos.GZR2023010031 and GZR2023010053).
文摘Scintillator-mediated indirect X-ray detectors,which transduce high-energy X-ray photons into detectable visible light,underpin critical applications in medical diagnostics,non-destructive imaging,and high-energy physics.Flexible scintillator films represent a transformative advancement for next-generation X-ray imaging,enabling conformal integration biological tissues and complex geometries.The pursuit of solution-processed scintillators with benchmark light yield,ultralow detection limit,and superior mechanical robustness constitutes the primary objective in this field.This review comprehensively analyzes emerging high-performance scintillators,including lanthanide-doped nanocrystals,organic emitters,perovskites,metal-organic frameworks(MOFs),atomically metal clusters,and metal-organic complexes,focusing on strategies to enhance radioluminescence yield,minimize detection limits,and achieve mechanical robustness.We elucidate carrier dynamics from exciton formation to radiative recombination,alongside advanced fabrication paradigms for flexible/stretchable films via polymer encapsulation and intrinsically flexible designs.The resulting devices demonstrate exceptional capabilities in static,dynamic,and multifunctional imaging under ultralow doses.Critical frontiers in radiation stability,artificial intelligence(AI)-accelerated material discovery,and light propagation engineering are outlined to guide future detector development.
基金the fundamental Research Funds for the central Universities(x2wjD2240360)for the funding supportMeanwhile,Engineering and Physical Sciences Research Council(EPSRC,EP/V027433/3)+2 种基金UK Research and Innovation(UKRI)under the UK government’s Horizon Europe funding(101077226,EP/Y008707/1)Faraday Institution(EP/S003053/1)Degradation project(FIRG001),Royal Society(IEC\NSFC\233361),QUB Agility Fund and Wright Technology and Research Centre(W-Tech,R5240MEE)Funding from UK aid from the UK Government through the Faraday Institution and the Transforming Energy Access Programme(Grant number FIRG050-Device engineering of Zn-based hybrid micro-flow batteries and by-product H2 collection for Emerging Economies)。
文摘Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing carefully designed cells that approximate the structural characteristics of practical batteries,we revisit this widely held view through in-operando X-ray radiography to examine zinc dendrite formation and HER under nearpractical operating conditions.While conventional understanding emphasizes the severity of these processes,our findings suggest that zinc dendrites and HER are noticeably less pronounced in dense,real-operation configurations compared to modified cells,possibly due to a more uniform electric field and the suppression of triple-phase boundaries.This study indicates that other components,such as degradation at the cathode current collector interface and configuration mismatches within the full cell,may also represent important barriers to the practical application of AZMBs,particularly during the early stages of electrodeposition.
基金funded by the National Natural Science Foundation of China(NNSFC)under Grant Numbers 42322408,42188101,and 42441809Additional support was provided by the Climbing Program of the National Space Science Center(NSSC,Grant No.E4PD3005)as well as the Specialized Research Fund for State Key Laboratories of China.
文摘A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-dimensional cusp boundary from a two-dimensional X-ray image because the detected X-ray signals will be integrated along the line of sight.In this work,a global magnetohydrodynamic code was used to simulate the X-ray images and photon count images,assuming an interplanetary magnetic field with a pure Bz component.The assumption of an elliptic cusp boundary at a given altitude was used to trace the equatorward and poleward boundaries of the cusp from a simulated X-ray image.The average discrepancy was less than 0.1 RE.To reduce the influence of instrument effects and cosmic X-ray backgrounds,image denoising was considered before applying the method above to SXI photon count images.The cusp boundaries were reasonably reconstructed from the noisy X-ray image.
基金supported by the National Key R&D Program of China 2022YFF0503002the National Natural Science Foundation of China(NSFC,Grant Nos.12333010 and 12233012)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0560000)supported by the Prominent Postdoctoral Project of Jiangsu Province(2023ZB304)supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences,grant No.XDA15320000.
文摘Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method,an indirect imaging technique that requires algorithms to reconstruct and optimize images.During the last decade,a variety of algorithms have been developed and improved.However,it is difficult to quantitatively evaluate the image quality of different solutions without a true,reference image of observation.How to choose the values of imaging parameters for these algorithms to get the best performance is also an open question.In this study,we present a detailed test of the characteristics of these algorithms,imaging dynamic range and a crucial parameter for the CLEAN method,clean beam width factor(CBWF).We first used SDO/AIA EUV images to compute DEM maps and calculate thermal X-ray maps.Then these realistic sources and several types of simulated sources are used as the ground truth in the imaging simulations for both RHESSI and ASO-S/HXI.The different solutions are evaluated quantitatively by a number of means.The overall results suggest that EM,PIXON,and CLEAN are exceptional methods for sidelobe elimination,producing images with clear source details.Although MEM_GE,MEM_NJIT,VIS_WV and VIS_CS possess fast imaging processes and generate good images,they too possess associated imperfections unique to each method.The two forward fit algorithms,VF and FF,perform differently,and VF appears to be more robust and useful.We also demonstrated the imaging capability of HXI and available HXI algorithms.Furthermore,the effect of CBWF on image quality was investigated,and the optimal settings for both RHESSI and HXI were proposed.
基金funded by Umm Al-Qura University,Saudi Arabia under grant number:25UQU4300346GSSR08.
文摘This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhanced with gated attention mechanisms,to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details.By isolating skeletal structures which remain stable over time compared to soft tissues,this method leverages bones as reliable biometric markers for identity verification.The model integrates custom-designed encoder and decoder blocks with attention gates,achieving high segmentation precision.To evaluate the impact of architectural choices,we conducted an ablation study comparing Attention U-Net with and without attentionmechanisms,alongside an analysis of data augmentation effects.Training and evaluation were performed on a curated chest X-ray dataset,with segmentation performance measured using Dice score,precision,and loss functions,achieving over 98% precision and 94% Dice score.The extracted bone structures were further processed to derive unique biometric patterns,enabling robust and privacy-preserving person identification.Our findings highlight the effectiveness of attentionmechanisms in improving segmentation accuracy and underscore the potential of chest bonebased biometrics in forensic and medical imaging.This work paves the way for integrating artificial intelligence into real-world forensic workflows,offering a non-invasive and reliable solution for post-mortem identification.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532113,11475170,11905041)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18)Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0244)。
文摘In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.
基金Supported by Wuhu Municipal Science and Technology Bureau of Anhui Province,No.2022cg43.
文摘BACKGROUND The objective of this study was to evaluate the use of combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with minimally invasive plate osteosynthesis(MIPO)in the management of proximal humeral shaft fractures.AIM To evaluate parallax-free panoramic X-ray images during surgery.METHODS A retrospective series of 17 proximal humeral shaft fractures were treated using combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with MIPO.The operating time and radiation exposure time were recorded,and early postoperative physical therapy and partial weight bearing were encouraged.Patients were followed at regular intervals and evaluated radiographically and clinically.RESULTS The mean operating time and radiation time were 73(range,49-95)minutes and 57(range:36-98)seconds,respectively.No complications occurred during the operation.All fractures healed at an average of 16.9(range:15-23)weeks.The average Constant-Murley score for all the patients was 89.5(range:75-100)points.None of the patients showed symptoms of vascular or nerve damage or wound infection.Three months after the operation,none of the patients developed subacromial impingement syndrome.No loosening or fracture of the implants occurred.The frontal and lateral radiographs showed good alignment.CONCLUSION We consider that MIPO with combined parallax-free panoramic X-ray imaging during surgery is an efficient method for treating proximal humeral shaft fractures,and could significantly reduce operative morbidity as well as lower the rate of intra-and postoperative complications.
基金supported by the Key Project of the National Natural Science Foundation of China-Yunnan Joint Fund(No.U2102215)National Natural Science Foundation(No.52472002)+5 种基金Science and Technology Project of Southwest Joint Graduate School of Yunnan Province(No.202302A0370008)2024 Industrial Innovation Talent Support Project(Preparation of luminous materials,performance control and application in plateau agriculture,No.YFGRC202407)National Natural Science Foundation of High-End Foreign Expert Introduction Plan(No.G2022039008L)Academician Workstation of Cherkasova Tatiana in Yunnan Province(No.202305AF150099)Yunnan Province Major Science and Technology Special Plan(No.202302AB080005)and UTS Chancellor’s Research Fellowship Program(No.J.L.,PRO22-15457)the National Health and Medical Research Council(No.J.L.,2025442).
文摘This study explores the application of X-ray-induced photochromism and photoluminescence in optical storage,anti-counterfeiting,non-destructive testing,and high-resolution X-ray detection and imaging.Ba_(2)LaNbO_(6):Bi,Eu phosphors were synthesized,with Bi enhancing X-ray-induced photochromic prop-erties.Under X-ray irradiation,the phosphors transfer from white to red in bright field conditions and emit red photoluminescence in dark field conditions.Exposure to 470 nm ultraviolet light induces rapid bleaching.The mechanisms of photochromism and photoluminescence,particularly Bi's role as a colorant,were systematically investigated.The Ba_(2)LaNbO_(6):Bi,Eu phosphors film achieves high resolution,high-lighting its potential for X-ray imaging and non-destructive testing.Furthermore,the flexible Ba_(2)LaNbO_(6):Bi,Eu film supports dual-mode imaging and detection,addressing the limitations of traditional flat dis-plays in 3D imaging.
基金funded by the National Natural Science Foundation of China(Nos.52474165 and 52522404)。
文摘Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.
基金supported by the National Natural Science Foundation of China(No.12105018)the Beijing Nova Program(Nos.Z211100002121129 and 20230484413)the Beijing Normal University Start-up Grant(No.312232104).
文摘We present a prototype for hybrid Compton and positron emission tomography(PET)imaging aimed at enhancing data utilization and enabling concurrent imaging of multiple radiopharmaceuticals.The prototype comprises two detectors that utilize LYSO-SiPM and were available in our laboratory.One detector consists of a 50×50 array of LYSO crystals,each measuring 0.9mm×0.9mm×10mm with 1 mm pitches,whereas the other detector comprises a 25×25 array of LYSO crystals,each measuring 1.9mm×1.9mm×10mm with 2 mm pitches.These detectors are mounted on a rotational stage,which enables them to function as either a Compton camera or a PET detector pair.The 64-channel signals from the SiPMs of each detector are processed through a capacitive multiplexing circuit to yield four position-weighted outputs.Distinct energy windows were used to discriminate Compton events from PET events.Energy resolution and energy-channel relationships were calibrated via multiple sources.The measured average energy resolutions(full widths at half maximum,FWHMs)for the detectors at 511 keV were 17.5%and 15.2%,respectively.The initial experimental results indicate an angular resolution(FWHM)of 8.6◦for the system in Compton imaging mode.A V-shaped tube injected with 18 F solution was clearly reconstructed,which further verified the imaging capabilities of the system in Compton imaging mode.The results of simulation and experimental imaging studies show that the system can detect tumors as small as 1 mm in diameter when working in PET imaging mode.Mouse bone PET imaging was successfully conducted,with the results matching well with the corresponding CT images.This technology holds great potential for advancing the development of physiological function modalities.
基金supported by the National Natural Science Foundation of China,No.31760290,82160688the Key Development Areas Project of Ganzhou Science and Technology,No.2022B-SF9554(all to XL)。
文摘Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.
基金the support of theNational Natural Science Foundation of China(U23B20151 and52171253)。
文摘With the increasing demand for oil exploration and subsurface resource development,density imaging plays an increasingly important role in identifying thin layers.However,conventional density imaging tools are limited by poor vertical resolution and therefore suffer from errors in accurately estimating the thickness and relative dip angle of thin layers.This affects the accurate evaluation of thin layer oil and gas reserves.To address this issue,this study evaluates the feasibility of employing novel methods based on advanced tool design.First,an electronically controllable X-ray source is selected to replace the traditional Cs-137 source,aiming to improve the tool's vertical resolution while reducing the radioactive risks commonly associated with chemical sources.Simulation results show that the X-ray tool provides sufficient depth of investigation with better vertical resolution while maintaining the same level of measurement sensitivity.Once the tool design is established,Fisher's optimal segmentation method is improved to enhance the estimation of thin layer thickness and relative dip angle.This is completed by transforming identifying thin layer interface into a mathematical clustering problem.The thin layer interface is fitted using the nonlinear least squares method,which enables the calculation of its parameters.The results demonstrate a 38.5%reduction in RMSE(root mean square error)for thin layer thickness and a 33.7%reduction in RMSE for relative dip angle,demonstrating the superior performance of enhanced X-ray tool in thin layer identification.This study provides a new perspective on the design of density imaging tools and assessment of thin layer,which can help in future thin layer hydrocarbon reserves evaluation and development decisions.
基金supported by the National Key R&D Program of China,Nos.2017YFA0104302(to NG and XM)and 2017YFA0104304(to BW and ZZ)
文摘Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.
基金supported by the National Magnetic Confinement Fusion Science Program of China (Nos.2022YFE03100004,2017YFE0301700,2017YFE0301701 and 2022YFE03060003)National Natural Science Foundation of China (Nos.12375226,12175227,11875255 and 11975231)+2 种基金the China Postdoctoral Science Foundation (No.2022M723066)the Fundamental Research Funds for the Central Universitiesthe Collaborative Innovation Program of Hefei Science Center,CAS (No.2022HSCCIP022)。
文摘A 100-channel double-foil soft X-ray array imaging(DSXAI)diagnostic system has been developed for the HL-2A tokamak to obtain tomographic bremsstrahlung emissivity and electron temperature(T_(e)).This system employs a double-foil technique to determine T_(e) by comparing the soft X-ray(SXR)emissivities from the same plasma location through two beryllium(Be)foils of differing thickness.The DSXAI system comprises five photocameras mounted at two different poloidal cross-sections,separated toroidally by 15°,allowing for three distinct poloidal viewing angles.Each photocamera features 20 channels,offering a temporal resolution of approximately 4μs and a spatial resolution of about 8 cm,with no channel overlap.Each photocamera contains two identical optical systems,each defined by an aperture slit and a photodiode array.The double-foil configuration is realized by placing these two optical systems,each with a different Be foil,in close proximity.Initial experimental results demonstrate that the DSXAI diagnostic system performs well,successfully reconstructing 2-dimensional(2D)tomographic SXR emissivity and T_(e) on the HL-2A tokamak.This study provides valuable insights for the future implementation of similar diagnostic systems on fusion reactors like ITER.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
基金supported by the Hubei Province Nature Science Foundation of China(Grant No.:2023AFB1077)the National Natural Science Foundation of China(Grant No.:82003308)+2 种基金the Doctoral Start-up Fund Project of Hubei University of Science and Technology,China(Grant No.:BK202118)the Innovation team and Medical research program of Hubei University of Science and Technology,China(Grant Nos.:2023T10 and 2022YKY05)the Hubei Province Key R&D Plan Big Health Local Special Project,China(Grant No.:2022BCE042).
文摘Transcatheter arterial embolization(TAE)is the mainstay for treating advanced hepatocellular carcinoma(HCC),and the performance of the embolization material is crucial in TAE.With the development of medical imaging and the birth of“X-ray-free”technologies,we designed a new dual-mode imaging material of dimethoxy tetraphenyl ethylene(DMTPE)via emulsification by mixing poly(N-isopropylacrylamide-co-acrylic acid)(PNA)with lipiodol and fluorocarbons,which was evaluated for temperature sensitivity,stability,and dual-mode visualization in vitro.Additionally,blood vessel casting embolization and renal artery imaging were assessed in healthy rabbits.In a rabbit model with a VX2 tumor,the effectiveness of TAE for treating HCC was examined,with an emphasis on evaluating long-term outcomes of embolization and its effects on tumor growth,necrosis,and proliferation through imaging techniques.In vitro experiments confirmed that the temperature-sensitive dual-oil-phase Pickering emulsion had good flow,stable contrast,and embolism when the oil-to-oil ratio and water-to-oil ratio were both 7:3(v/v)and stabilized with 8%PNA.Similarly,in vivo,arterial embolization confirmed the excellent properties of DMTPE prepared at the abovementioned ratios.It was observed that DMTPE not only has an antitumor effect but can also achieve dual imaging using X-rays and ultrasound,making it a promising excellent vascular embolization material for TAE in tumor treatment.
基金the National Natural Science Foundation of China(12364044)Yunnan Major Scientific and Technological Projects(202202AG050004,202202AG050016,202302AQ370003)+1 种基金the International Joint Innovation Platform of Yunnan Province(202203AP140004)the Outstanding Youth Project of Yunnan Province Applied Basic Research Project(202401AV070012).
文摘Scintillator is a key material for the development of X-ray detectors,which has a promising application in medical imaging,security inspection and industrial non-injury detection.The majority of scintillators currently used in imaging are real-time imaging scintillators,which can cause ionization radiation damage to biological subjects or detection equipment during the imaging process and require complex,highly sensitive detection systems.Therefore,exploring stable,environmentally friendly scintillator materials that can achieve delayed imaging is of significance in the field of imaging.Herein,we devel-oped an X-ray time-lapse imaging scintillator,Sr_(2)Al_(6)O_(11):Dy^(3+)phosphor,which generates stable traps by X-ray irradiation,thus endowing it with excellent persistent luminescence and information storage properties(>42 d).Moreover,traps constructed by X-ray can be repeatedly refilled(>40 times)under UV light and carriers are released in theform of mechanical or thermal excitation when refilling is complete.By constructing the traps in the phosphor during X-ray excitation and using it for repetitive imaging,the detection limit is 74.78 nGy/s,and the spatial imaging resolution is as high as 16 lp/mm.This discovery providesa new idea for the development oftime-delayed X-ray scintillator.