Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and ...Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.展开更多
A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample ...A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.展开更多
Cold worked and annealed supersaturated Cu-2.65Ni-0.6Si and Cu-2.35Ni-0.6Si-0.6Cr alloys were studied. The microstructural parameters evolution, including crystallite size, root mean square strain and dislocation dens...Cold worked and annealed supersaturated Cu-2.65Ni-0.6Si and Cu-2.35Ni-0.6Si-0.6Cr alloys were studied. The microstructural parameters evolution, including crystallite size, root mean square strain and dislocation density was analyzed using Materials Analysis Using Diffraction software (MAUD). The parameters for both alloys have typical values of cold deformed and subsequently annealed copper based alloy. A net change of the crystallite size, root mean square strain and dislocation density values of the alloys aged at 450 °C for 2.5-3 h seems corresponding to the recovery and recrystallization processes. Addition of Cr as quaternary element did not lead to any drastic changes of post deformation or ageing microstructural parameters and hence of recovery-recrystallization kinetics.展开更多
Fitting of full X-ray diffraction patterns is an effective method for quantifying abundances during X-ray diffraction (XRD) analyses. The method is based on the principal that the observed diffraction pattern is the s...Fitting of full X-ray diffraction patterns is an effective method for quantifying abundances during X-ray diffraction (XRD) analyses. The method is based on the principal that the observed diffraction pattern is the sum of the individual phases that compose the sample. By adding an internal standard (usually corundum) to both the observed patterns and to those for individual pure phases (standards), all patterns can all be normalized to an equivalent intensity based on the internal standard intensity. Using least-squares refinement, the individual phase proportions are varied until an optimal match is reached. As the fitting of full patterns uses the entire pattern, including background, disordered and amorphous phases are explicitly considered as individual phases, with their individual intensity profiles or “amorphous humps” included in the refinement. The method can be applied not only to samples that contain well-ordered materials, but it is particularly well suited for samples containing amorphous and/or disordered materials. In cases with extremely disordered materials where no crystal structure is available for Rietveld refinement or there is no unique intensity area that can be measured for a traditional RIR analysis, full-pattern fitting may be the best or only way to readily obtain quantitative results. This approach is also applicable in cases where there are several coexisting highly disordered phases. As all phases are considered as discrete individual components, abundances are not constrained to sum to 100%.展开更多
A new method for quantitative X-ray diffraction phase analysis of a powder misture has been developed according to Popovic's doping method. The weight fraction of amorphous material in the analysed sample is obtai...A new method for quantitative X-ray diffraction phase analysis of a powder misture has been developed according to Popovic's doping method. The weight fraction of amorphous material in the analysed sample is obtained. For a multicomponent system in which (n-2) pure phases are added into an n-phase compnent sample and theweight fractions of all n phases can be determined by the method. The test results of confirmation agree well with the theory.展开更多
A new expression of quantitative phase analysis by standardless X-ray diffraction has been derived using intensity matrix of vector modulus.The criterion of standardless X-ray diffraction analysis was suggested,so as ...A new expression of quantitative phase analysis by standardless X-ray diffraction has been derived using intensity matrix of vector modulus.The criterion of standardless X-ray diffraction analysis was suggested,so as to separate the diffraction pattern of every phase from that of sample.The optimal solution could be obtained by the least squares regression.展开更多
A new expression of quantitative phase analysis by standardless X-ray diffraction has been derived using intensity matrix of vector modulus,The criterion of standardless X-ray diffraction analysis was suggested,so as ...A new expression of quantitative phase analysis by standardless X-ray diffraction has been derived using intensity matrix of vector modulus,The criterion of standardless X-ray diffraction analysis was suggested,so as to separate the diffraction pattern of every phase from that of sample.The optimal solution could be obtained by the least squares regression.展开更多
Based on the X-ray scattering intensity theory,the correction factors of the degree of crystallinity formulae of the multicomponent polymers have been clearly defined.The formula of degree of erystallinity of the mult...Based on the X-ray scattering intensity theory,the correction factors of the degree of crystallinity formulae of the multicomponent polymers have been clearly defined.The formula of degree of erystallinity of the multicomponent polymers was derived in terms of the WAXD theory ahd improved graphic multipeak resolution methods.The results calculated are compatible with the density measurement.展开更多
Different physical, mechanical and chemical processes, such as: ion implantation, oxidation, nitridation and others create on the surface of materials residual stress state, characterized by high level and strong gra...Different physical, mechanical and chemical processes, such as: ion implantation, oxidation, nitridation and others create on the surface of materials residual stress state, characterized by high level and strong gradient. X-ray diffraction method widely used for stress measurements has some difficulties in interpretation of experimental data, when the depth of X-ray penetration is compared with thickness of surface layer where inhomogeneous stress distribution is localized. Early it has been shown by authors that diffraction line broadening occurs when analyzed surface is characterized by strong gradient. The interest to study the diffraction line broadening is connected to the possibility of obtaining information about parameters of surface stress distribution. In the present paper the convolution and deconvolution concepts of Fourier analysis were applied to study X ray diffraction line broadening caused by surface stress gradients. Developed methodology allows determining of stress distribution in superficial layers of materials.展开更多
The properties of synthetic graphite materials, widely used in advanced fields, are determined by their structure, which is formed in the process of high-temperature (~2500<span style="white-space:normal;"...The properties of synthetic graphite materials, widely used in advanced fields, are determined by their structure, which is formed in the process of high-temperature (~2500<span style="white-space:normal;"><span style="white-space:nowrap;">°</span></span><span style="white-space:normal;"></span>C) heat treatment. The fine structure of a graphitizing carbon material based on petroleum coke containing 1.3 wt% S at various stages of graphitization was studied by X-ray diffraction analysis. Some of the samples contained the addition of dispersed Fe<sub>2</sub>O<sub>3</sub>. It is shown that the heat-treated material in the range 1200<span style="white-space:normal;"><span style="white-space:nowrap;">°</span></span><span style="white-space:normal;"></span>C - 2600<span style="white-space:normal;"><span style="white-space:nowrap;">°</span></span><span style="white-space:normal;"></span>C is heterogeneous, its component composition is determined by the processing temperature and the presence of Fe<sub>2</sub>O<sub>3</sub> additive. The observed dependence of the component composition on the heat treatment temperature suggests that the process of graphitization of the carbon material, apparently, develops through a number of metastable states.展开更多
Gas hydrate(GH)is an unconventional resource estimated at 1000-120,000 trillion m^(3)worldwide.Research on GH is ongoing to determine its geological and flow characteristics for commercial produc-tion.After two large-...Gas hydrate(GH)is an unconventional resource estimated at 1000-120,000 trillion m^(3)worldwide.Research on GH is ongoing to determine its geological and flow characteristics for commercial produc-tion.After two large-scale drilling expeditions to study the GH-bearing zone in the Ulleung Basin,the mineral composition of 488 sediment samples was analyzed using X-ray diffraction(XRD).Because the analysis is costly and dependent on experts,a machine learning model was developed to predict the mineral composition using XRD intensity profiles as input data.However,the model’s performance was limited because of improper preprocessing of the intensity profile.Because preprocessing was applied to each feature,the intensity trend was not preserved even though this factor is the most important when analyzing mineral composition.In this study,the profile was preprocessed for each sample using min-max scaling because relative intensity is critical for mineral analysis.For 49 test data among the 488 data,the convolutional neural network(CNN)model improved the average absolute error and coefficient of determination by 41%and 46%,respectively,than those of CNN model with feature-based pre-processing.This study confirms that combining preprocessing for each sample with CNN is the most efficient approach for analyzing XRD data.The developed model can be used for the compositional analysis of sediment samples from the Ulleung Basin and the Korea Plateau.In addition,the overall procedure can be applied to any XRD data of sediments worldwide.展开更多
The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deform...The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deformation and transmission electron microscopy.PBF-LB and heat treatment were employed to manufacture Al-12%Si binary alloy specimens with different microstructures.At an early stage of de-formation prior to macroscopic yielding,stress was dominantly partitioned into the α-Al matrix,rather than the Si phase in all specimens.Highly concentrated Si solute(~3%)in the α-Al matrix promoted the dynamic precipitation of nanoscale Si phase during loading,thereby increasing the yield strength.After macroscopic yielding,the partitioned stress in the Si phase monotonically increased in the strain-hardening regime with an increase in the dislocation density in the α-Al matrix.At a later stage of strain hardening,the flow curves of the partitioned stress in the Si phase yielded stress relaxation owing to plastic deformation.Therefore,Si-phase particles localized along the cell walls in the cellular-solidified microstructure play a significant role in dislocation obstacles for strain hardening.Compared with the results of the heat-treated specimens with different microstructural factors,the dominant strengthening factors of PBF-LB manufactured Al-Si alloys were discussed.展开更多
A new method of the quantitative phase analysis of the sample containing an amorphous phase or a standardless phase by X-ray diffraction is proposed in the paper. The addtion of a reference phase or some analytical ph...A new method of the quantitative phase analysis of the sample containing an amorphous phase or a standardless phase by X-ray diffraction is proposed in the paper. The addtion of a reference phase or some analytical phase to the analyzed sample is not required in this method and the experimental results are satisfactory.展开更多
The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of...The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of asphaltene molecules were estimated by combining 1 H nuclear magnetic resonance and X-ray diffraction analyses,and were also ob-tained from vapor pressure osmometry and elemental analysis.Heteroatoms,such as S,N,and O atoms,were considered in the construction of average molecular structure of heavy oils.Two important structural parameters were proposed,including the number of alkyl chain substituents to aromatic rings and the number of total rings with heteroatoms.Ultimately,the av-erage molecular structures of polycyclic aromatics,heavy resins and asphaltene molecules were constructed.The number of α-,β-,γ-,and aromatic hydrogen atoms of the constructed average molecular structures fits well with the number of hydro-gen atoms derived from the experimental spectral data.展开更多
The density,nature of the dislocations and distribution of the domain sizes in cold-deformed Pb-Ca-Sn solid solution were determined by X-ray diffraction profile analysis.The dislocation densities are of the order of ...The density,nature of the dislocations and distribution of the domain sizes in cold-deformed Pb-Ca-Sn solid solution were determined by X-ray diffraction profile analysis.The dislocation densities are of the order of 1010 cm-2.The strain broadening of diffraction profiles was accounted for by dislocation contrast factor.The coherent domain size was determined by the recently developed PM2K software package.Assuming that the domain size distribution is log-normal,the distribution function(median μ and variance σ) was calculated from the size parameters determined from X-ray diffraction profile analysis.展开更多
In this paper, a simple and facile surfactant assisted combustion synthesis is reported for the ZnO nanoparticles. The synthesis of ZnO-NPs has been done with the assistance of non-ionic surfactant TWEEN 80. The effec...In this paper, a simple and facile surfactant assisted combustion synthesis is reported for the ZnO nanoparticles. The synthesis of ZnO-NPs has been done with the assistance of non-ionic surfactant TWEEN 80. The effect of fuel variations and comparative study of fuel urea and glycine have been studied by using characterization techniques like X-ray diffraction (XRD), transmission electron microscope (TEM) and particle size analyzer. From XRD, it indicates the presence of hexagonal wurtzite structure for ZnO-NPs. Using X-ray broadening, crystallite sizes and lattice strain on the peak broadening of ZnO-NPs were studied by using Williamson-Hall (W-H) analysis and size-strain plot. Strain, stress and energy density parameters were calculated for the XRD peaks of all the samples using (UDM), uniform stress deformation model (USDM), uniform deformation energy density model (UDEDM) and by the size-strain plot method (SSP). The results of mean particle size showed an inter correlation with W-H analysis, SSP, particle analyzer and TEM results.展开更多
Flupirtine maleate, a pharmaceutical compound for treating psychotic disease in clinics, has seven polymorphs. Form A, with better crystal stability and bioavailability, has been widely used as the pharmaceutical crys...Flupirtine maleate, a pharmaceutical compound for treating psychotic disease in clinics, has seven polymorphs. Form A, with better crystal stability and bioavailability, has been widely used as the pharmaceutical crystal form. Unfortunately, it is usually found in a polymorphic mixture with form B. In this study, pure crystal forms of A and B were prepared and characterized by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FT-IR) and thermal analysis. An XRPD-based method for the quantitative determination of the amount of the flupirtine maleate polymorphs form A and form B was also established through a systematic optimization of instrumental parameters. The results of the analytical methodology validation showed that the XPRD method had a broad quantitative range of 0- 100% (w/w), good linear relationship, with R2= 0.999, excellent repeatability and precision and low limits of detection (LoD) of 0.15% (w/w) and quantification (LoQ) of 0.5% (w/w). The results also showed that the single-peak method was not as good as the whole pattern in reducing the influence of the preferred orientation, but this can be compensated for by a systematic optimization of instrumental parameters and validating the analytical methodology to reduce errors and obtain a good, repeatable, sensitive, and accurate method. This XRPD method can be used to analyze mixtures of flupirtine maleate polymorphs (forms A and B) quantitatively and control the quality of the bulk drug.展开更多
The bauxite mineral obtained from Araku, Vishakapatnam district of Andhra Pradesh, India is used in the present work. Structural characterization was performed by X-ray diffraction (XRD). The mineral was found to be g...The bauxite mineral obtained from Araku, Vishakapatnam district of Andhra Pradesh, India is used in the present work. Structural characterization was performed by X-ray diffraction (XRD). The mineral was found to be gibbsite in phase. The transitional metal ions present were investigated using electron paramagnetic resonance (EPR) and optical absorption spectra. The EPR results suggest that Fe3+ has replaced Al3+ in the unit cell of bauxite. The optical absorption spectrum is due to Fe3+ which indicates that it is in distorted octahedral environment. The near-infrared (NIR) spectrum is due to water fundamentals and combination overtones, which confirm the formula of the compound. The impurities in the mineral are identified using spectroscopic techniques.展开更多
基金supported by the Australian Research Council Linkage Project(No.LP200200717)co sponsored by Newmont Corporation(United States)and Vega Industries(India)+1 种基金the Powder Diffraction Beamline at the Australia’s Nuclear Science and Technology Organisation(No.PDR19870),Australiathe Centre for Microscopy and Microanalysis at the University of Queensland(No.1366),Australia。
文摘Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.
文摘A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.
文摘Cold worked and annealed supersaturated Cu-2.65Ni-0.6Si and Cu-2.35Ni-0.6Si-0.6Cr alloys were studied. The microstructural parameters evolution, including crystallite size, root mean square strain and dislocation density was analyzed using Materials Analysis Using Diffraction software (MAUD). The parameters for both alloys have typical values of cold deformed and subsequently annealed copper based alloy. A net change of the crystallite size, root mean square strain and dislocation density values of the alloys aged at 450 °C for 2.5-3 h seems corresponding to the recovery and recrystallization processes. Addition of Cr as quaternary element did not lead to any drastic changes of post deformation or ageing microstructural parameters and hence of recovery-recrystallization kinetics.
文摘Fitting of full X-ray diffraction patterns is an effective method for quantifying abundances during X-ray diffraction (XRD) analyses. The method is based on the principal that the observed diffraction pattern is the sum of the individual phases that compose the sample. By adding an internal standard (usually corundum) to both the observed patterns and to those for individual pure phases (standards), all patterns can all be normalized to an equivalent intensity based on the internal standard intensity. Using least-squares refinement, the individual phase proportions are varied until an optimal match is reached. As the fitting of full patterns uses the entire pattern, including background, disordered and amorphous phases are explicitly considered as individual phases, with their individual intensity profiles or “amorphous humps” included in the refinement. The method can be applied not only to samples that contain well-ordered materials, but it is particularly well suited for samples containing amorphous and/or disordered materials. In cases with extremely disordered materials where no crystal structure is available for Rietveld refinement or there is no unique intensity area that can be measured for a traditional RIR analysis, full-pattern fitting may be the best or only way to readily obtain quantitative results. This approach is also applicable in cases where there are several coexisting highly disordered phases. As all phases are considered as discrete individual components, abundances are not constrained to sum to 100%.
文摘A new method for quantitative X-ray diffraction phase analysis of a powder misture has been developed according to Popovic's doping method. The weight fraction of amorphous material in the analysed sample is obtained. For a multicomponent system in which (n-2) pure phases are added into an n-phase compnent sample and theweight fractions of all n phases can be determined by the method. The test results of confirmation agree well with the theory.
文摘A new expression of quantitative phase analysis by standardless X-ray diffraction has been derived using intensity matrix of vector modulus.The criterion of standardless X-ray diffraction analysis was suggested,so as to separate the diffraction pattern of every phase from that of sample.The optimal solution could be obtained by the least squares regression.
文摘A new expression of quantitative phase analysis by standardless X-ray diffraction has been derived using intensity matrix of vector modulus,The criterion of standardless X-ray diffraction analysis was suggested,so as to separate the diffraction pattern of every phase from that of sample.The optimal solution could be obtained by the least squares regression.
文摘Based on the X-ray scattering intensity theory,the correction factors of the degree of crystallinity formulae of the multicomponent polymers have been clearly defined.The formula of degree of erystallinity of the multicomponent polymers was derived in terms of the WAXD theory ahd improved graphic multipeak resolution methods.The results calculated are compatible with the density measurement.
文摘Different physical, mechanical and chemical processes, such as: ion implantation, oxidation, nitridation and others create on the surface of materials residual stress state, characterized by high level and strong gradient. X-ray diffraction method widely used for stress measurements has some difficulties in interpretation of experimental data, when the depth of X-ray penetration is compared with thickness of surface layer where inhomogeneous stress distribution is localized. Early it has been shown by authors that diffraction line broadening occurs when analyzed surface is characterized by strong gradient. The interest to study the diffraction line broadening is connected to the possibility of obtaining information about parameters of surface stress distribution. In the present paper the convolution and deconvolution concepts of Fourier analysis were applied to study X ray diffraction line broadening caused by surface stress gradients. Developed methodology allows determining of stress distribution in superficial layers of materials.
文摘The properties of synthetic graphite materials, widely used in advanced fields, are determined by their structure, which is formed in the process of high-temperature (~2500<span style="white-space:normal;"><span style="white-space:nowrap;">°</span></span><span style="white-space:normal;"></span>C) heat treatment. The fine structure of a graphitizing carbon material based on petroleum coke containing 1.3 wt% S at various stages of graphitization was studied by X-ray diffraction analysis. Some of the samples contained the addition of dispersed Fe<sub>2</sub>O<sub>3</sub>. It is shown that the heat-treated material in the range 1200<span style="white-space:normal;"><span style="white-space:nowrap;">°</span></span><span style="white-space:normal;"></span>C - 2600<span style="white-space:normal;"><span style="white-space:nowrap;">°</span></span><span style="white-space:normal;"></span>C is heterogeneous, its component composition is determined by the processing temperature and the presence of Fe<sub>2</sub>O<sub>3</sub> additive. The observed dependence of the component composition on the heat treatment temperature suggests that the process of graphitization of the carbon material, apparently, develops through a number of metastable states.
基金supported by the Gas Hydrate R&D Organization and the Korea Institute of Geoscience and Mineral Resources(KIGAM)(GP2021-010)supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2021R1C1C1004460)Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korean government(MOTIE)(20214000000500,Training Program of CCUS for Green Growth).
文摘Gas hydrate(GH)is an unconventional resource estimated at 1000-120,000 trillion m^(3)worldwide.Research on GH is ongoing to determine its geological and flow characteristics for commercial produc-tion.After two large-scale drilling expeditions to study the GH-bearing zone in the Ulleung Basin,the mineral composition of 488 sediment samples was analyzed using X-ray diffraction(XRD).Because the analysis is costly and dependent on experts,a machine learning model was developed to predict the mineral composition using XRD intensity profiles as input data.However,the model’s performance was limited because of improper preprocessing of the intensity profile.Because preprocessing was applied to each feature,the intensity trend was not preserved even though this factor is the most important when analyzing mineral composition.In this study,the profile was preprocessed for each sample using min-max scaling because relative intensity is critical for mineral analysis.For 49 test data among the 488 data,the convolutional neural network(CNN)model improved the average absolute error and coefficient of determination by 41%and 46%,respectively,than those of CNN model with feature-based pre-processing.This study confirms that combining preprocessing for each sample with CNN is the most efficient approach for analyzing XRD data.The developed model can be used for the compositional analysis of sediment samples from the Ulleung Basin and the Korea Plateau.In addition,the overall procedure can be applied to any XRD data of sediments worldwide.
基金JST PRESTO(grant number JPMJPR22Q4)(Japan)The Light Metal Educational Foundation,Inc.(Japan),and“Knowledge Hub Aichi”Aichi Prefectural Government(Japan)The synchrotron radiation experiments were performed at BL46XUof SPring-8with the approval of the Japan Synchrotron Radiation Research Institute(JASRI)(Proposal No.2021A1663,2022A1001and 2022A1798).
文摘The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deformation and transmission electron microscopy.PBF-LB and heat treatment were employed to manufacture Al-12%Si binary alloy specimens with different microstructures.At an early stage of de-formation prior to macroscopic yielding,stress was dominantly partitioned into the α-Al matrix,rather than the Si phase in all specimens.Highly concentrated Si solute(~3%)in the α-Al matrix promoted the dynamic precipitation of nanoscale Si phase during loading,thereby increasing the yield strength.After macroscopic yielding,the partitioned stress in the Si phase monotonically increased in the strain-hardening regime with an increase in the dislocation density in the α-Al matrix.At a later stage of strain hardening,the flow curves of the partitioned stress in the Si phase yielded stress relaxation owing to plastic deformation.Therefore,Si-phase particles localized along the cell walls in the cellular-solidified microstructure play a significant role in dislocation obstacles for strain hardening.Compared with the results of the heat-treated specimens with different microstructural factors,the dominant strengthening factors of PBF-LB manufactured Al-Si alloys were discussed.
文摘A new method of the quantitative phase analysis of the sample containing an amorphous phase or a standardless phase by X-ray diffraction is proposed in the paper. The addtion of a reference phase or some analytical phase to the analyzed sample is not required in this method and the experimental results are satisfactory.
基金the funding of the National Basic Research Program of China (Grant No.2006CB202505)
文摘The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of asphaltene molecules were estimated by combining 1 H nuclear magnetic resonance and X-ray diffraction analyses,and were also ob-tained from vapor pressure osmometry and elemental analysis.Heteroatoms,such as S,N,and O atoms,were considered in the construction of average molecular structure of heavy oils.Two important structural parameters were proposed,including the number of alkyl chain substituents to aromatic rings and the number of total rings with heteroatoms.Ultimately,the av-erage molecular structures of polycyclic aromatics,heavy resins and asphaltene molecules were constructed.The number of α-,β-,γ-,and aromatic hydrogen atoms of the constructed average molecular structures fits well with the number of hydro-gen atoms derived from the experimental spectral data.
文摘The density,nature of the dislocations and distribution of the domain sizes in cold-deformed Pb-Ca-Sn solid solution were determined by X-ray diffraction profile analysis.The dislocation densities are of the order of 1010 cm-2.The strain broadening of diffraction profiles was accounted for by dislocation contrast factor.The coherent domain size was determined by the recently developed PM2K software package.Assuming that the domain size distribution is log-normal,the distribution function(median μ and variance σ) was calculated from the size parameters determined from X-ray diffraction profile analysis.
文摘In this paper, a simple and facile surfactant assisted combustion synthesis is reported for the ZnO nanoparticles. The synthesis of ZnO-NPs has been done with the assistance of non-ionic surfactant TWEEN 80. The effect of fuel variations and comparative study of fuel urea and glycine have been studied by using characterization techniques like X-ray diffraction (XRD), transmission electron microscope (TEM) and particle size analyzer. From XRD, it indicates the presence of hexagonal wurtzite structure for ZnO-NPs. Using X-ray broadening, crystallite sizes and lattice strain on the peak broadening of ZnO-NPs were studied by using Williamson-Hall (W-H) analysis and size-strain plot. Strain, stress and energy density parameters were calculated for the XRD peaks of all the samples using (UDM), uniform stress deformation model (USDM), uniform deformation energy density model (UDEDM) and by the size-strain plot method (SSP). The results of mean particle size showed an inter correlation with W-H analysis, SSP, particle analyzer and TEM results.
基金supported by the Major Program of Ministry of Science and Technology of China(No:2015ZX09J15104-003002)
文摘Flupirtine maleate, a pharmaceutical compound for treating psychotic disease in clinics, has seven polymorphs. Form A, with better crystal stability and bioavailability, has been widely used as the pharmaceutical crystal form. Unfortunately, it is usually found in a polymorphic mixture with form B. In this study, pure crystal forms of A and B were prepared and characterized by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FT-IR) and thermal analysis. An XRPD-based method for the quantitative determination of the amount of the flupirtine maleate polymorphs form A and form B was also established through a systematic optimization of instrumental parameters. The results of the analytical methodology validation showed that the XPRD method had a broad quantitative range of 0- 100% (w/w), good linear relationship, with R2= 0.999, excellent repeatability and precision and low limits of detection (LoD) of 0.15% (w/w) and quantification (LoQ) of 0.5% (w/w). The results also showed that the single-peak method was not as good as the whole pattern in reducing the influence of the preferred orientation, but this can be compensated for by a systematic optimization of instrumental parameters and validating the analytical methodology to reduce errors and obtain a good, repeatable, sensitive, and accurate method. This XRPD method can be used to analyze mixtures of flupirtine maleate polymorphs (forms A and B) quantitatively and control the quality of the bulk drug.
文摘The bauxite mineral obtained from Araku, Vishakapatnam district of Andhra Pradesh, India is used in the present work. Structural characterization was performed by X-ray diffraction (XRD). The mineral was found to be gibbsite in phase. The transitional metal ions present were investigated using electron paramagnetic resonance (EPR) and optical absorption spectra. The EPR results suggest that Fe3+ has replaced Al3+ in the unit cell of bauxite. The optical absorption spectrum is due to Fe3+ which indicates that it is in distorted octahedral environment. The near-infrared (NIR) spectrum is due to water fundamentals and combination overtones, which confirm the formula of the compound. The impurities in the mineral are identified using spectroscopic techniques.