Spatial resolution and image-processing methods for full-field X-ray fluorescence(FF-XRF)imaging using X-ray pinhole cameras were studied using Geant4simulations with different geometries and algorithms for image reco...Spatial resolution and image-processing methods for full-field X-ray fluorescence(FF-XRF)imaging using X-ray pinhole cameras were studied using Geant4simulations with different geometries and algorithms for image reconstruction.The main objectives were:(1)calculating the quantum efficiency curves of specific cameras,(2)studying the relationships between the spatial resolution and the pinhole diameter,magnification,and camera binning value,and(3)comparing image-processing methods for pinhole camera systems.Several results were obtained using a point and plane source as the X-ray fluorescence emitter and an array of 100×100 silicon pixel detectors as the X-ray camera.The quantum efficiency of a back-illuminated deep depletion(BI-DD)structure was above 30%for the XRF energies in the 0.8–9 keV range,with the maximum of 93.7%at 4 keV.The best spatial resolution of the pinhole camera was 24.7μm and 31.3 lp/mm when measured using the profile function of the point source,with the diameter of 20μm,magnification of 3.16,and camera bin of 1.A blind deconvolution algorithm with Gaussian filtering performed better than the Wiener filter and Richardson iterative methods on FF-XRF images,with the signal-to-noise ratio of 7.81 dB and improved signalto-noise ratio of 7.24 dB at the diameter of 120μm,magnification of 1.0,and camera bin of 1.展开更多
X-ray image might be corrupted by noise or blurring because of signal transmission or the bad X- ray lens. This paper presents a two-stage shock filter based on Partial Differential Equations (PDE) to restore noisy bl...X-ray image might be corrupted by noise or blurring because of signal transmission or the bad X- ray lens. This paper presents a two-stage shock filter based on Partial Differential Equations (PDE) to restore noisy blurred X-ray image. Shock filters are popular morphological methods. They are used for noise removal, edge enhancement and image segmentation. Our experimental results show that the performances of shock filter are excellent in X-ray image. The peak signal-to-noise ratio (PSNR) values are 38 dB at least in restoring the noisy X-ray image. The sharpness of image’s edges increase in enhancing the blurred X-ray image. Furthermore, this paper proposes a VLSI architecture for accelerating the high-definition (HD) X-ray image (944 p) process. This paper implements the architecture in FPGA. The hardware cost is low because the computation of shock filter is low complex. To achieve the real-time processing specification, this paper uses a 5-series shock filter architecture to implement computation of HD X-ray image. This paper demonstrates a 944 p, 43.1-fps solution on 100 MHz with 133 k gate counts in Design Compiler, and with 2904 logic elements in FPGA.展开更多
Objective: To study the effective computerized image processing of underexposed and overexposed X-rays of bones and joints. Methods: Ninety-nine conventional X-ray images (82 were overexposed and 17 were underexposed)...Objective: To study the effective computerized image processing of underexposed and overexposed X-rays of bones and joints. Methods: Ninety-nine conventional X-ray images (82 were overexposed and 17 were underexposed),scanned by an UMAX Astra 4000U Scanner, were converted into digital images on the basis of their analog images. A computerized imaging processing program consisting of five functional modules such as Contrast Stretch, Fast Flourier Transform (FFT), Image Smoothing Modules, Inverse Fast Flourier Transform (IFFT) and Nonlinear Transform performed image contrast stretch and smoothing. Three senior doctors from hospital image sections made their evaluation of all the processed images. Results: Of 82 overexposed films, 71 met the clinical requirements after image processing, and 11 were unable to be applied to clinical diagnosis, accounting for 87% and 13% respectively. Of the other 17 underexposed X-ray images, 11 met the clinical requirements while 6 were not, making a percentage of 64 and 35. Conclusion: Image contrast stretch and smoothing processing are significantly effective on conventional X-ray images which were inappropriately exposed, and can avoid more X-ray radiation caused by handling of radiological photograph again. This method can decrease hospital cost and provide acute and effective X-ray examinations for the treatment and cure for critical patients.展开更多
Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image qual...Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image quality of the reconstruction is still difficult,which is particularly useful for scheme design of X-ray imaging systems,testing and improvement of imaging algorithms,and scientific research of X-ray sources.Currently,there is no specified method to quantitatively evaluate the quality of X-ray image reconstruction and the point-spread function(PSF)of an X-ray imager.In this paper,we propose percentage proximity degree(PPD)by considering the imaging characteristics of X-ray image reconstruction and in particular,sidelobes and their effects on imaging quality.After testing a variety of imaging quality assessments in six aspects,we utilized the technique for order preference by similarity to ideal solution to the indices that meet the requirements.Then we develop the final quality index for X-ray image reconstruction,QuIX,which consists of the selected indices and the new PPD.QuIX performs well in a series of tests,including assessment of instrument PSF and simulation tests under different grid configurations,as well as imaging tests with RHESSI data.It is also a useful tool for testing of imaging algorithms,and determination of imaging parameters for both RHESSI and ASO-S/Hard X-ray Imager,such as field of view,beam width factor,and detector selection.展开更多
The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the ...The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top, middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column. The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.展开更多
The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-...The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-effective manner inorder to fight this disease. This paper presents the prediction of COVID-19 withChest X-Ray images, and the implementation of an image processing systemoperated using deep learning and neural networks. In this paper, a Deep Learning,Machine Learning, and Convolutional Neural Network-based approach for predicting Covid-19 positive and normal patients using Chest X-Ray pictures is proposed. In this study, machine learning tools such as TensorFlow were used forbuilding and training neural nets. Scikit-learn was used for machine learning fromend to end. Various deep learning features are used, such as Conv2D, Dense Net,Dropout, Maxpooling2D for creating the model. The proposed approach had aclassification accuracy of 96.43 percent and a validation accuracy of 98.33 percentafter training and testing the X-Ray pictures. Finally, a web application has beendeveloped for general users, which will detect chest x-ray images either as covidor normal. A GUI application for the Covid prediction framework was run. Achest X-ray image can be browsed and fed into the program by medical personnelor the general public.展开更多
AIM: To discuss the clinical value of CT three-dimensional (3-D) imaging in diagnosing gastrointestinal tract diseases.METHODS: Three-D imaging findings of 52 patients were retrospectively analyzed. Three-D imagin...AIM: To discuss the clinical value of CT three-dimensional (3-D) imaging in diagnosing gastrointestinal tract diseases.METHODS: Three-D imaging findings of 52 patients were retrospectively analyzed. Three-D imaging methods included shaded surface display (SSD), volume rendering (VR), virtual endoscopy (VE) and multiplanar reformatting (MPR). The diagnosis results of CT 3-D were evaluated by comparison with those of endoscopy and/or surgical finding.RESULTS: Fifty-two patients with gastrointestinal tract diseases were diagnosed by CT 3-D imaging, of whom 50 cases were correctly diagnosed and 2 were misdiagnosed. There were 33 cases of gastric diseases (27 with carcinoma, 5 with peptic ulcer and 1 with leiomyoma) and 19 large intestinal diseases (10 with colon carcinoma, 2 with carcinoma of the rectum, 5 with colon polypus and 2 with tuberculosis of the ileocecal junction). Twenty-two cases with prominent lesions (9 with subsequent hollow lesions), 20 with stenosis of cavity (8 with concomitant prominent lesions) and 10 with hollow lesions (5 with concomitant prominent lesions) were shown in 3-D images. The minimal lesion shown was 1.0 cm × 0.8 cm × 0.5 cm.CONCLUSION: CT 3-D imaging, a non-invasive examination without pain, can display clearly and directly the lesions of gastrointestinal tract with accurate location and high diagnosis accuracy. It is an important complementary technique to endoscopy.展开更多
The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to i...The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.展开更多
The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification...The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification is another key technique. In this paper, a weld X-ray film digitalizing system has been established with linear array CCD and highlight LED light source. Its space resolution can reach 0. 04 mm/pixel and scanning speed can reach 100 mm/s for an industrial film. The transfer function curves of the system have been measured and the results indicate that its image gray resolution can reach 88 G/D at 4. 5D, and its dynamic range can be wider than 2. OD. In order to facilitate the evaluation of large welded structure, a panoramic evaluation algorithm is developed also. The algorithm includes image matching, image fusion and panoramic evaluation of the long linked film image.展开更多
A high-speed X-ray nondestructive detector is designed in this paper. The principle of X-ray nondestructive detection is analyzed, and a general system scheme of the high-speed X-ray nondestructive detector is propose...A high-speed X-ray nondestructive detector is designed in this paper. The principle of X-ray nondestructive detection is analyzed, and a general system scheme of the high-speed X-ray nondestructive detector is proposed. The Virtex-4 series Fxl2 FPGA chip is used to design its hardware circuit, the PowerPC405 embedded system is developed, the high-speed image processing algorithm is applied to compile its processing software, and TCP/IP protocol is employed to compile the correspondence software, to realize high-speed X-ray signal gathering, processing and transmission. The experimental result indicated that the detector can be applied to the long-distance and on-line nondestructive detection of product line with Steel Wire Ropes in correlative industry field, such as mines, ports and wharfs. The running rate of the conveyer belt could achieve 6m/s when the survey width of the detector is 1.6 m.展开更多
The aim of this work is to determine the porosity of concrete by means of two NDT (non-destructive testing) using digital images. In one test, the images were obtained through X-ray microtomography and for another t...The aim of this work is to determine the porosity of concrete by means of two NDT (non-destructive testing) using digital images. In one test, the images were obtained through X-ray microtomography and for another test via digital scanner. In both of the tests, the images were processed using techniques of mathematical morphology and pixel processing. For both NDT, it was used concrete samples with 20-30 MPa of compressive strength. The results for the porosity were compared with results obtained by the standard test proposed by NBR (Norma Brasileira) 9778 (2005) showing the compatibility between two studied methods and pattern method.展开更多
The ground subsidence on the underground pipe often is caused with the reduction of the effective stress and the loss of suction in the base course and then,soil drainage into the pipe.The final formation of the cavit...The ground subsidence on the underground pipe often is caused with the reduction of the effective stress and the loss of suction in the base course and then,soil drainage into the pipe.The final formation of the cavity growth in the ground was observed as the ground subsidence.Authors focused this problem and hence performed model tests with water-inflow and drainage cycle in the model ground.The mechanism of cavity generation in the model ground was observed using an X-ray Computed Tomography(CT)scanner.In those studies,water was supplied into the model grounds from the defected underground pipe model in case of the change of relative density and grain size distribution.As results,it was observed that the loosening area was generated from the defected part with water-inflow and some of the soil particles in the ground were drained into the underground pipe through the defected part.And afterward,the cavity was generated just above the defected part of the model pipe in the ground.Based on this observation,it might be said that the bulk density of soil around the defected pipe played one of key factor to generate the cavity in the ground.Moreover,the dimension of the defected part should be related to the magnification of the ground subsidence,in particular,crack width on a sewerage pipe and particle size would be the quantitative factor to evaluate the magnification of the ground subsidence.In this paper,it was concluded that the low relative density of soil would become the critical factor to cause the fatal failure of model ground if the maximum grain size was close to the dimension of crack width of defective part.The fatal collapse of the ground with high relative density more than 80%would be avoided in a few cycles of water inflow and soil drainage.展开更多
Diffraction enhanced imaging (DEI) has been widely applied in many fields, especially when imaging low-Z samples or when the difference in the attenuation coefficient between different regions in the sample is too s...Diffraction enhanced imaging (DEI) has been widely applied in many fields, especially when imaging low-Z samples or when the difference in the attenuation coefficient between different regions in the sample is too small to be detected. Recent developments of this technique have presented a need for a new software package for data analysis. Here, the Diffraction Enhanced Image Reconstructor (DEIReconstructor), developed in Matlab, is presented. DEIReconstructor has a user-friendly graphical user interface and runs under any of the 32~bit or 64- bit Microsoft Windows operating systems including XP and WinT. Many of its features are integrated to support imaging preprocessing, extract absorption, refractive and scattering information of diffraction enhanced imaging and allow for parallel-beam tomography reconstruction for DEI-CT. Furthermore, many other useful functions are also implemented in order to simplify the data analysis and the presentation of results. The compiled software package is freely available.展开更多
基金supported by the Sichuan Science and Technology Program,China(No.2020ZDZX0004)。
文摘Spatial resolution and image-processing methods for full-field X-ray fluorescence(FF-XRF)imaging using X-ray pinhole cameras were studied using Geant4simulations with different geometries and algorithms for image reconstruction.The main objectives were:(1)calculating the quantum efficiency curves of specific cameras,(2)studying the relationships between the spatial resolution and the pinhole diameter,magnification,and camera binning value,and(3)comparing image-processing methods for pinhole camera systems.Several results were obtained using a point and plane source as the X-ray fluorescence emitter and an array of 100×100 silicon pixel detectors as the X-ray camera.The quantum efficiency of a back-illuminated deep depletion(BI-DD)structure was above 30%for the XRF energies in the 0.8–9 keV range,with the maximum of 93.7%at 4 keV.The best spatial resolution of the pinhole camera was 24.7μm and 31.3 lp/mm when measured using the profile function of the point source,with the diameter of 20μm,magnification of 3.16,and camera bin of 1.A blind deconvolution algorithm with Gaussian filtering performed better than the Wiener filter and Richardson iterative methods on FF-XRF images,with the signal-to-noise ratio of 7.81 dB and improved signalto-noise ratio of 7.24 dB at the diameter of 120μm,magnification of 1.0,and camera bin of 1.
文摘X-ray image might be corrupted by noise or blurring because of signal transmission or the bad X- ray lens. This paper presents a two-stage shock filter based on Partial Differential Equations (PDE) to restore noisy blurred X-ray image. Shock filters are popular morphological methods. They are used for noise removal, edge enhancement and image segmentation. Our experimental results show that the performances of shock filter are excellent in X-ray image. The peak signal-to-noise ratio (PSNR) values are 38 dB at least in restoring the noisy X-ray image. The sharpness of image’s edges increase in enhancing the blurred X-ray image. Furthermore, this paper proposes a VLSI architecture for accelerating the high-definition (HD) X-ray image (944 p) process. This paper implements the architecture in FPGA. The hardware cost is low because the computation of shock filter is low complex. To achieve the real-time processing specification, this paper uses a 5-series shock filter architecture to implement computation of HD X-ray image. This paper demonstrates a 944 p, 43.1-fps solution on 100 MHz with 133 k gate counts in Design Compiler, and with 2904 logic elements in FPGA.
文摘Objective: To study the effective computerized image processing of underexposed and overexposed X-rays of bones and joints. Methods: Ninety-nine conventional X-ray images (82 were overexposed and 17 were underexposed),scanned by an UMAX Astra 4000U Scanner, were converted into digital images on the basis of their analog images. A computerized imaging processing program consisting of five functional modules such as Contrast Stretch, Fast Flourier Transform (FFT), Image Smoothing Modules, Inverse Fast Flourier Transform (IFFT) and Nonlinear Transform performed image contrast stretch and smoothing. Three senior doctors from hospital image sections made their evaluation of all the processed images. Results: Of 82 overexposed films, 71 met the clinical requirements after image processing, and 11 were unable to be applied to clinical diagnosis, accounting for 87% and 13% respectively. Of the other 17 underexposed X-ray images, 11 met the clinical requirements while 6 were not, making a percentage of 64 and 35. Conclusion: Image contrast stretch and smoothing processing are significantly effective on conventional X-ray images which were inappropriately exposed, and can avoid more X-ray radiation caused by handling of radiological photograph again. This method can decrease hospital cost and provide acute and effective X-ray examinations for the treatment and cure for critical patients.
基金supported by the National Natural Science Foundation of China(NSFC)12333010the National Key R&D Program of China 2022YFF0503002+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0560000)the NSFC 11921003supported by the Prominent Postdoctoral Project of Jiangsu Province(2023ZB304)supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences,grant No.XDA15320000.
文摘Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image quality of the reconstruction is still difficult,which is particularly useful for scheme design of X-ray imaging systems,testing and improvement of imaging algorithms,and scientific research of X-ray sources.Currently,there is no specified method to quantitatively evaluate the quality of X-ray image reconstruction and the point-spread function(PSF)of an X-ray imager.In this paper,we propose percentage proximity degree(PPD)by considering the imaging characteristics of X-ray image reconstruction and in particular,sidelobes and their effects on imaging quality.After testing a variety of imaging quality assessments in six aspects,we utilized the technique for order preference by similarity to ideal solution to the indices that meet the requirements.Then we develop the final quality index for X-ray image reconstruction,QuIX,which consists of the selected indices and the new PPD.QuIX performs well in a series of tests,including assessment of instrument PSF and simulation tests under different grid configurations,as well as imaging tests with RHESSI data.It is also a useful tool for testing of imaging algorithms,and determination of imaging parameters for both RHESSI and ASO-S/Hard X-ray Imager,such as field of view,beam width factor,and detector selection.
基金Project(2004CB619205) supported by the National Key Fundamental Research and Development Program of ChinaProject(50325415) supported by the National Science Fund for Distinguished Young ScholarsProject(50574099) supported by the National Natural Science Foundation of China
文摘The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top, middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column. The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.
基金support from Taif University Researchers Supporting Project number(TURSP-2020/73),Taif University,Taif,Saudi Arabia.
文摘The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-effective manner inorder to fight this disease. This paper presents the prediction of COVID-19 withChest X-Ray images, and the implementation of an image processing systemoperated using deep learning and neural networks. In this paper, a Deep Learning,Machine Learning, and Convolutional Neural Network-based approach for predicting Covid-19 positive and normal patients using Chest X-Ray pictures is proposed. In this study, machine learning tools such as TensorFlow were used forbuilding and training neural nets. Scikit-learn was used for machine learning fromend to end. Various deep learning features are used, such as Conv2D, Dense Net,Dropout, Maxpooling2D for creating the model. The proposed approach had aclassification accuracy of 96.43 percent and a validation accuracy of 98.33 percentafter training and testing the X-Ray pictures. Finally, a web application has beendeveloped for general users, which will detect chest x-ray images either as covidor normal. A GUI application for the Covid prediction framework was run. Achest X-ray image can be browsed and fed into the program by medical personnelor the general public.
基金Supported by the Social Development Program of Xiamen City, No. 3502Z20034018
文摘AIM: To discuss the clinical value of CT three-dimensional (3-D) imaging in diagnosing gastrointestinal tract diseases.METHODS: Three-D imaging findings of 52 patients were retrospectively analyzed. Three-D imaging methods included shaded surface display (SSD), volume rendering (VR), virtual endoscopy (VE) and multiplanar reformatting (MPR). The diagnosis results of CT 3-D were evaluated by comparison with those of endoscopy and/or surgical finding.RESULTS: Fifty-two patients with gastrointestinal tract diseases were diagnosed by CT 3-D imaging, of whom 50 cases were correctly diagnosed and 2 were misdiagnosed. There were 33 cases of gastric diseases (27 with carcinoma, 5 with peptic ulcer and 1 with leiomyoma) and 19 large intestinal diseases (10 with colon carcinoma, 2 with carcinoma of the rectum, 5 with colon polypus and 2 with tuberculosis of the ileocecal junction). Twenty-two cases with prominent lesions (9 with subsequent hollow lesions), 20 with stenosis of cavity (8 with concomitant prominent lesions) and 10 with hollow lesions (5 with concomitant prominent lesions) were shown in 3-D images. The minimal lesion shown was 1.0 cm × 0.8 cm × 0.5 cm.CONCLUSION: CT 3-D imaging, a non-invasive examination without pain, can display clearly and directly the lesions of gastrointestinal tract with accurate location and high diagnosis accuracy. It is an important complementary technique to endoscopy.
基金Funded by National Natural Science Foundation of China(No.51178114)the Fundamental Research Funds for the Central Universities(No.CXLX12_0117)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1318)
文摘The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.
文摘The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification is another key technique. In this paper, a weld X-ray film digitalizing system has been established with linear array CCD and highlight LED light source. Its space resolution can reach 0. 04 mm/pixel and scanning speed can reach 100 mm/s for an industrial film. The transfer function curves of the system have been measured and the results indicate that its image gray resolution can reach 88 G/D at 4. 5D, and its dynamic range can be wider than 2. OD. In order to facilitate the evaluation of large welded structure, a panoramic evaluation algorithm is developed also. The algorithm includes image matching, image fusion and panoramic evaluation of the long linked film image.
基金Priority Project of Tianjin Science Technical Commission(08ZCKFGX02400)Science and Technology Development Foundation of Tianjin Colleges and Universities(2006ZD38)
文摘A high-speed X-ray nondestructive detector is designed in this paper. The principle of X-ray nondestructive detection is analyzed, and a general system scheme of the high-speed X-ray nondestructive detector is proposed. The Virtex-4 series Fxl2 FPGA chip is used to design its hardware circuit, the PowerPC405 embedded system is developed, the high-speed image processing algorithm is applied to compile its processing software, and TCP/IP protocol is employed to compile the correspondence software, to realize high-speed X-ray signal gathering, processing and transmission. The experimental result indicated that the detector can be applied to the long-distance and on-line nondestructive detection of product line with Steel Wire Ropes in correlative industry field, such as mines, ports and wharfs. The running rate of the conveyer belt could achieve 6m/s when the survey width of the detector is 1.6 m.
文摘The aim of this work is to determine the porosity of concrete by means of two NDT (non-destructive testing) using digital images. In one test, the images were obtained through X-ray microtomography and for another test via digital scanner. In both of the tests, the images were processed using techniques of mathematical morphology and pixel processing. For both NDT, it was used concrete samples with 20-30 MPa of compressive strength. The results for the porosity were compared with results obtained by the standard test proposed by NBR (Norma Brasileira) 9778 (2005) showing the compatibility between two studied methods and pattern method.
文摘The ground subsidence on the underground pipe often is caused with the reduction of the effective stress and the loss of suction in the base course and then,soil drainage into the pipe.The final formation of the cavity growth in the ground was observed as the ground subsidence.Authors focused this problem and hence performed model tests with water-inflow and drainage cycle in the model ground.The mechanism of cavity generation in the model ground was observed using an X-ray Computed Tomography(CT)scanner.In those studies,water was supplied into the model grounds from the defected underground pipe model in case of the change of relative density and grain size distribution.As results,it was observed that the loosening area was generated from the defected part with water-inflow and some of the soil particles in the ground were drained into the underground pipe through the defected part.And afterward,the cavity was generated just above the defected part of the model pipe in the ground.Based on this observation,it might be said that the bulk density of soil around the defected pipe played one of key factor to generate the cavity in the ground.Moreover,the dimension of the defected part should be related to the magnification of the ground subsidence,in particular,crack width on a sewerage pipe and particle size would be the quantitative factor to evaluate the magnification of the ground subsidence.In this paper,it was concluded that the low relative density of soil would become the critical factor to cause the fatal failure of model ground if the maximum grain size was close to the dimension of crack width of defective part.The fatal collapse of the ground with high relative density more than 80%would be avoided in a few cycles of water inflow and soil drainage.
基金Supported by National Basic Research Program of China(2012CB825800)National Natural Science Foundation of China(11205189,11375225,81271574,U1332109)Knowledge Innovation Program of Chinese Academy of Sciences(KJCX2-YW-N42)
文摘Diffraction enhanced imaging (DEI) has been widely applied in many fields, especially when imaging low-Z samples or when the difference in the attenuation coefficient between different regions in the sample is too small to be detected. Recent developments of this technique have presented a need for a new software package for data analysis. Here, the Diffraction Enhanced Image Reconstructor (DEIReconstructor), developed in Matlab, is presented. DEIReconstructor has a user-friendly graphical user interface and runs under any of the 32~bit or 64- bit Microsoft Windows operating systems including XP and WinT. Many of its features are integrated to support imaging preprocessing, extract absorption, refractive and scattering information of diffraction enhanced imaging and allow for parallel-beam tomography reconstruction for DEI-CT. Furthermore, many other useful functions are also implemented in order to simplify the data analysis and the presentation of results. The compiled software package is freely available.
基金supported by National Spark Program(No.2011GA780037)Science and Technology Planning Project of Guangdong Province,China(No.2010A0507001-144)+2 种基金Natural Science Foundation of China(No.30871450)the earmarked fund for China Agriculture Research System(CARS-27)Special Fund for Agro-scientific Research in the Public Interest of China(No.201203016)