A finite element and boundary element model of the 100 m X-BOW polar exploration cruise ship is established. The vibrated velocity-excited force admittance matrix is calculated by frequency response analysis, and the ...A finite element and boundary element model of the 100 m X-BOW polar exploration cruise ship is established. The vibrated velocity-excited force admittance matrix is calculated by frequency response analysis, and the vibrated velocity in the stern plate and main engine foundations is tested during the trial trip. Then, the excited force of the propeller and main engine is derived using the vibrated velocity and admittance matrix.Based on the excited force, the cabin-simulated vibrated velocity is compared with the tested vibrated velocity, and the tolerance is within the allowable scope in engineering. Loading the excited forces on the boundary element model, the distribution characteristics of sound level underwater are analyzed. Then, forces excited by the main engine and propeller are loaded on the model, and the contribution ratio of excitation sources to underwater acoustic radiation is analyzed. The result provides a reference for vibration assessment in the early stage and control in the late stage.展开更多
The electronic band structures and band gap bowing parameters of In_xGa_(1-x)N are studied by the firstprinciples method based on the density functional theory. Calculations by employing both the Heyd-ScuseriaErnzer...The electronic band structures and band gap bowing parameters of In_xGa_(1-x)N are studied by the firstprinciples method based on the density functional theory. Calculations by employing both the Heyd-ScuseriaErnzerh of hybrid functional(HSE06) and the Perdew-Burke-Ernzerhof(PBE) one are performed. We found that the theoretical band gap bowing parameter is dependent significantly on the calculation method, especially on the exchange-correlation functional employed in the DFT calculations. The band gap of In_xGa_(1-x)N alloy decreases considerably when the In constituent x increases. It is the interactions of s–s and p–p orbitals between anions and cations that play significant roles in formatting the band gaps bowing. In general, the HSE06 hybrid functional could provide a good alternative to the PBE functional in calculating the band gap bowing parameters.展开更多
文摘A finite element and boundary element model of the 100 m X-BOW polar exploration cruise ship is established. The vibrated velocity-excited force admittance matrix is calculated by frequency response analysis, and the vibrated velocity in the stern plate and main engine foundations is tested during the trial trip. Then, the excited force of the propeller and main engine is derived using the vibrated velocity and admittance matrix.Based on the excited force, the cabin-simulated vibrated velocity is compared with the tested vibrated velocity, and the tolerance is within the allowable scope in engineering. Loading the excited forces on the boundary element model, the distribution characteristics of sound level underwater are analyzed. Then, forces excited by the main engine and propeller are loaded on the model, and the contribution ratio of excitation sources to underwater acoustic radiation is analyzed. The result provides a reference for vibration assessment in the early stage and control in the late stage.
基金Project supported by the National Natural Science Foundation of China(Nos.11204257,21233004)the China Postdoctoral Science Foundation(No.2012M511447)
文摘The electronic band structures and band gap bowing parameters of In_xGa_(1-x)N are studied by the firstprinciples method based on the density functional theory. Calculations by employing both the Heyd-ScuseriaErnzerh of hybrid functional(HSE06) and the Perdew-Burke-Ernzerhof(PBE) one are performed. We found that the theoretical band gap bowing parameter is dependent significantly on the calculation method, especially on the exchange-correlation functional employed in the DFT calculations. The band gap of In_xGa_(1-x)N alloy decreases considerably when the In constituent x increases. It is the interactions of s–s and p–p orbitals between anions and cations that play significant roles in formatting the band gaps bowing. In general, the HSE06 hybrid functional could provide a good alternative to the PBE functional in calculating the band gap bowing parameters.