Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo...Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.展开更多
A simple modified model is presented based on R. A. London's self-similarity model on time-independent ionization hydrodynamics of exploding foil X-ray lasers. In our model, the time-dependent ionization effect is un...A simple modified model is presented based on R. A. London's self-similarity model on time-independent ionization hydrodynamics of exploding foil X-ray lasers. In our model, the time-dependent ionization effect is under consideration and the average ion charge depends on the temperature. Then we obtain the new scaling laws for temperature, scale length and electron density, which have better agreement with experimental results.展开更多
X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast scien...X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.展开更多
Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order mo...Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.展开更多
Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective ...Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.展开更多
Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectr...Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectronic integration,but still faces serious challenges.Herein,we propose a facile method to synthesize cesium lead halide(CsPbX3)microstructures with well-defined morphologies,sizes,and constituent element gradient.The scheme is conducted using a chemical vapor deposition(CVD),which is subsequently associated with annealing-assisted solid-solid anion exchange.For the plate-shaped structures,the controllability on the cross-sectional dimension enables to precisely modulate the lasing modes,thus achieving single-mode operation;while tuning the stoichiometric of the halogen anion components in the plate-shaped CsPbI_(x)Br_(3−x) alloy samples,the lasing wavelengths are straightforwardly varied to span the entire visible spectrum.By comparison,the experimental scheme on synthesizing alloyed CsPbI_(x)Br_(3−x) perovskites is conducted using an in-situ approach,thereby achieving precise modulation of bandgap-controlled microlasers by controlling the reaction time.Such laser properties like controllable microcavity modes and broad stoichiometry-dependent tunability of light-emitting/lasing colors,associated with the facile synthesizing method of monocrystalline CsPbI_(x)Br_(3−x) structures,make lead halide perovskites ideal materials for the development of wavelength-controlled microlasers toward practical photonic integration.展开更多
As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ene...As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ener-gy,biomedicine,optoelectronic devices,and so on.At present,there have been scant reports on the application of NiTe_(2)in the field of ultrafast photonics.In this work,NiTe_(2)was synthesized by chemical vapor deposition(CVD)and integrated with a tapered optical fiber to achieve mode-locking in an erbium-doped fiber laser(EDFL)and a thu-lium-doped fiber laser(TDFL).The mode-locked EDFL exhibited a pulse width of 678 fs and an output power of 3.92 mW.The pulse width of mode-locked TDFL was estimated to have a pulse width of 694 fs with an output power of 21.64 mW.These results demonstrate that NiTe_(2)is an effective saturable absorber material with potential applica-tions in the field of ultrafast optics.展开更多
The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more...The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.展开更多
Introduction:Surgeons typically prefer 270μm and 272μm laser probes in retrograde intrarenal surgery(RIRS)due to the reduced deflection capacity of flexible ureterorenoscopes when using larger probe diameters.This s...Introduction:Surgeons typically prefer 270μm and 272μm laser probes in retrograde intrarenal surgery(RIRS)due to the reduced deflection capacity of flexible ureterorenoscopes when using larger probe diameters.This study aims to investigate the effects of 272 and 365μm holmium laser probes on operative time,clinical efficacy,and complication rates in RIRS.Materials and Methods:A total of 285 patients with proximal ureteral or kidney stones who met the inclusion criteria were enrolled in the study.Patients were divided into two groups based on laser probe thickness:272μm and 365μm.Stone-free rates,operative time,and complication rates were compared between the groups.Factors affecting stone-free rates were analyzed using multivariate logistic regression analysis.Results:Patient and stone characteristics were similar between the two groups.No significant differences were found in stone-free or complication rates.However,operative time was significantly shorter in the 365μm probe group.In univariate analysis,risk factors for postoperative residual stones included multi-calyceal stones,lower pole stones,high Hounsfield unit(HU)values on noncontrast computed tomography,and larger stone size.In multivariate analysis,independent prognostic factors for residual stones were identified as multi-calycal stones,lower pole stones,and high HU values.Conclusion:Compared to 272μm laser probes,operative time was shorter in surgeries performed with 365μm laser probes.The 365μm holmium laser can be effectively and safely used in the treatment of proximal ureteral and renal stones,demonstrating high clinical efficacy and safety.展开更多
Photonic crystal surface emitting lasers(PCSELs)utilize the Bragg diffraction of two-dimensional photonic crystals to achieve a single-mode output with a high power and a small divergence angle,and has recently attrac...Photonic crystal surface emitting lasers(PCSELs)utilize the Bragg diffraction of two-dimensional photonic crystals to achieve a single-mode output with a high power and a small divergence angle,and has recently attracted much attention^([1−3]).In 2023,Kyoto University reported GaAs-based 945 nm PCSELs with a continuous-wave(CW)single-mode output power of exceeding 50 W,and a narrow beam divergence angle of 0.05°,demonstrating a brightness of 1 GW·cm^(−2)·sr^(−1),which rivals those of the existing bulky lasers^([4]).展开更多
Perovskite materials have emerged as promising candidates for various optoelectronic applications owing to their remarkable optoelectronic properties and easy solution processing.Metal halide perovskites,as direct-ban...Perovskite materials have emerged as promising candidates for various optoelectronic applications owing to their remarkable optoelectronic properties and easy solution processing.Metal halide perovskites,as direct-bandgap semiconductors,show an excellent class of optical gain media,which makes them applicable to the development of low-threshold or even thresholdless lasers.This mini review explores recent advances in perovskite-based laser technology,which have led to chiral single-mode microlasers,low-threshold,external-cavity-free lasing devices at room temperature,and other innovative device architectures.Including self-assembled CsPbBr3 microwires that enable edge lasing.Realized continuous-wave(CW)pumped lasing by perovskite material pushes the research of electrically driven perovskite lasers.The capacity to regulate charge transport in halide perovskites further enhances their applicability in optoelectronic systems.The ongoing integration of perovskite materials with advanced photonic structures holds excellent potential for future innovations in laser technology and photovoltaics.We also highlight the transformative potential of perovskite materials in advancing the next generation of efficient and integrated optoelectronic devices.展开更多
Perovskite semiconductors show great promise as gain media for all-solution-processed single-mode microlasers.However,despite the recent efforts to improve their lasing performance,achieving tunable single-mode microl...Perovskite semiconductors show great promise as gain media for all-solution-processed single-mode microlasers.However,despite the recent efforts to improve their lasing performance,achieving tunable single-mode microlasers remains challenging.In this work,we address this challenge by demonstrating a tunable vertical cavity surface emitting laser(VCSEL)employing a tunable gain medium of halide phase-change perovskites-specifically MAPbI_(3) perovskite,sandwiched between two highly reflective mirrors composed of bottom-distributed Bragg reflectors(DBRs).This VCSEL possesses single-mode lasing emission with a low threshold of 23.5μJ cm^(−2) under 160 K,attributed to strong optical confinement in the high-quality(Q)cavity.Upon the phase change of MAPbI_(3) perovskite,both its gain and dielectric constant changes dramatically,enabling a wide(Δλ>9 nm)and temperature-sensitive(0.30 nm K^(−1) rate)spectral tunability of lasing mode in the near-infrared(N-IR)region.The laser displays excellent stability,demonstrating an 80%lifetime of>2.4×107 pulses excitation.Our findings may provide a versatile platform for the next generation of tunable coherent light sources.展开更多
Rotational dynamics simulations of neutral O_(2)molecules driven by linearly,elliptically and circularly polarized femtosecond pulsed lasers are carried out using a full quantum time-dependent wave packet evolution me...Rotational dynamics simulations of neutral O_(2)molecules driven by linearly,elliptically and circularly polarized femtosecond pulsed lasers are carried out using a full quantum time-dependent wave packet evolution method.Here,the direction of laser propagation is set along the z axis,and the polarization plane is restricted to the xy plane.The results indicate that the alignment of O_(2)molecules in the z direction is weakly affected by varying the ellipticity when the total laser intensity is held constant.For rotation within the xy plane,the linearly polarized laser significantly excites rotational motion,with the degree of excitation increasing as the ellipticity increases.In contrast,under the influence of a circularly polarized laser,the angular distribution of O_(2)molecules in the xy plane remains isotropic.Additionally,the effects of the initial rotational quantum number,the temperature of the O_(2)molecules and the nuclear spin on laser-induced alignment are discussed.展开更多
The authors report the development of aλ~4.1μm quantum cascade laser grown by metal-organic chemical vapor deposition using strain-balanced In Ga As/In Al As materials.A device with a 7.5 mm cavity length and 6.5μm...The authors report the development of aλ~4.1μm quantum cascade laser grown by metal-organic chemical vapor deposition using strain-balanced In Ga As/In Al As materials.A device with a 7.5 mm cavity length and 6.5μm ridge width,bonded to an aluminum nitride heatsink,achieves maximum output powers of 3.4 W at 288 K in pulsed mode and 1.6 W at288 K in continuous-wave(CW)operation,with corresponding maximum wall-plug efficiencies of 14.8%and 9.3%.A kink is observed in the power–current curve under CW operation,which is absent in pulsed operation.Near-field results show that in CW operation,the horizontal beam quality factor M2fluctuates with current,indicating mode instability and highorder lateral mode excitation,while in pulsed mode,the horizontal M2remains stable around 1.3 as the current increases from 1.4 A to 1.9 A.展开更多
Synchrotron method of resonant X-ray reflectivity 2D mapping has been applied to study ultrathin epitaxial layers of WS_(2)grown by pulsed laser deposition on Al_(2)O_(3)(0001)substrates.The measurements were carried ...Synchrotron method of resonant X-ray reflectivity 2D mapping has been applied to study ultrathin epitaxial layers of WS_(2)grown by pulsed laser deposition on Al_(2)O_(3)(0001)substrates.The measurements were carried out across the L absorption edge of tungsten to perform depth-dependent element-selective analysis sensitive to potential chemical modification of the WS_(2)layer in ambient conditions.Despite the few monolayer thickness of the studied film,the experimentally measured maps of reflectance as a function of incident angle and photon energy turned out to be quite informative showing well-pronounced interference effects near W absorption edge at 10210 eV.The synchrotron studies were complemented with conventional non-resonant reflectance measurements carried out in the laboratory at a fixed photon energy corresponding to Cu Kαemission.The reconstruction of the depth and energy dependent scattering length density within the studied multilayers was carried out using the OpenCL empowered fitting software utilizing spectral shaping algorithm which does not rely on the pre-measured reference absorption spectra.A thin WO_(x) layer has been revealed at the surface of the WS_(2)layer pointing out to the effect of water assisted photo-oxidation reported in a number of works related to ultrathin layers of transition metal dichalcogenides.展开更多
Ultra-narrow bandwidth mode-locked lasers with tunable pulse duration can be versatile light sources for diverse applications.However,the spectral-temporal control of a narrow bandwidth mode-locked laser is challengin...Ultra-narrow bandwidth mode-locked lasers with tunable pulse duration can be versatile light sources for diverse applications.However,the spectral-temporal control of a narrow bandwidth mode-locked laser is challenging due to limited gain and nonlinearity,hindering practical applications of such lasers.We demonstrate a pulse duration widely tunable mode-locked ultra-narrow bandwidth laser using a composite filtering mechanism and a single-wall carbon nanotube.The laser pulse duration can be adjusted from 481 ps to 1.38 ns,which is the widest tuning range achieved in narrow-bandwidth passively mode-locked lasers.When the pulse duration is 1.38 ns,the corresponding spectral width reaches 4 pm(502 MHz).Numerical simulations support the experimental results and show that the evolution of long pulses in the laser cavity behaves similarly to a quasi-continuous wave with a low breathing ratio.We have not only designed a simple and flexible tunable scheme for the dilemma of spectral-temporal control in narrow-bandwidth mode-locked fiber lasers but also provided a unique and idealized light source for various applications that takes into account robust output.展开更多
We propose a novel scheme for the population and depletion of nuclear isomers.This scheme combines the γ photons with energiesà 10 keV emitted during the interaction of a contemporary high-intensity laser pulse ...We propose a novel scheme for the population and depletion of nuclear isomers.This scheme combines the γ photons with energiesà 10 keV emitted during the interaction of a contemporary high-intensity laser pulse with a plasma and one or multiple photon beams supplied by intense lasers.Owing to nonlinear effects,two-or multiphoton absorption dominates over the conventional multistep one-photon process for an optimized γ flash.Moreover,this nonlinear effect can be greatly enhanced with the help of externally supplied low-energy photons coming from another laser.These low-energy photons act such that the effective cross-section experienced by the γ photons becomes tunable,growing with the intensity I_(0) of the beam.Assuming I_(0)~10^(18) W·cm^(-2) for the photon beam,an effective cross-section as large as 10^(-21)-10^(-28) cm^(2) for the γ photons can be achieved.Thus,with state-of-the-art 10 PW laser facilities,the yields from two-photon absorption can reach 10^(6)-10^(9) isomers per shot for selected states that are separated from their ground state by E2 transitions.Similar yields for transitions with higher multipolarities can be accommodated by multiphoton absorption with additional photons provided.展开更多
The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill ...The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill in foam hohlraums with a wall density of 0.8 g/cm^(3) than in solid gold hohlraums.The radiation temperatures at different angles confirm these results.Simulation results show that the expanding plasma density in the foam hohlraums is lower than in the solid hohlraums,resulting in less expanding plasma emission and higher radiation temperature.Thus,foam gold hohlraums have advantages in reducing wall plasma filling and improving X-ray transmission,which has potential applications in achieving a higher fusion yield.展开更多
Based on the moiré effect and the Fresnel diffraction theory, a novel technique for diagnosing the beam properties is presented and analyzed, which is especially suitable for X-ray lasers. The method makes it pos...Based on the moiré effect and the Fresnel diffraction theory, a novel technique for diagnosing the beam properties is presented and analyzed, which is especially suitable for X-ray lasers. The method makes it possible, in a one-shot experimental measurement, to determine the beam quality factor M2, the effective radius of curvature, the beam width, the far-field divergence, and the waist location and radius as well as the spatial coherence and its evolution. Numerical simulation proves the validity of the method. Note that the novel moiré technique opens an efficient road, for the first time, to fully diagnose the spatial properties of X-ray lasers.展开更多
基金supported by the Czech Academy of Sciences(Mobility Plus Project No.CNRS-23-12)A.M.F.was supported by the Russian Science Foundation(Grant No.20-12-00077).
文摘Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.
基金supported by National Natural Science Foundation of China(Nos.11574390,11374360,41472130)the National Basic Research Program of China(No.2013CBA01504)
文摘A simple modified model is presented based on R. A. London's self-similarity model on time-independent ionization hydrodynamics of exploding foil X-ray lasers. In our model, the time-dependent ionization effect is under consideration and the average ion charge depends on the temperature. Then we obtain the new scaling laws for temperature, scale length and electron density, which have better agreement with experimental results.
基金supported by the National Grand Instrument Project No. SQ2019YFF01014400the Natural Science Foundation of China (Grant Nos. 12375147, 12435011, 12075030)+2 种基金the Beijing Outstanding Young Scientist Project, Project for Young Scientists in Basic Research of Chinese Academy of Sciences (YSBR-115)the Beijing Normal University Scientific Research Initiation Fund for Introducing Talents No. 310432104the Fundamental Research Funds for the Central Universities, Peking University
文摘X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.
文摘Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.
文摘Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.
基金supported by the National Natural Science Foundation of China(No.12374257)。
文摘Development of on-chip coherent light sources with desired single-mode operation and straightforward spectral tunability has attracted intense interest due to ever-increasing demand for photonic devices and optoelectronic integration,but still faces serious challenges.Herein,we propose a facile method to synthesize cesium lead halide(CsPbX3)microstructures with well-defined morphologies,sizes,and constituent element gradient.The scheme is conducted using a chemical vapor deposition(CVD),which is subsequently associated with annealing-assisted solid-solid anion exchange.For the plate-shaped structures,the controllability on the cross-sectional dimension enables to precisely modulate the lasing modes,thus achieving single-mode operation;while tuning the stoichiometric of the halogen anion components in the plate-shaped CsPbI_(x)Br_(3−x) alloy samples,the lasing wavelengths are straightforwardly varied to span the entire visible spectrum.By comparison,the experimental scheme on synthesizing alloyed CsPbI_(x)Br_(3−x) perovskites is conducted using an in-situ approach,thereby achieving precise modulation of bandgap-controlled microlasers by controlling the reaction time.Such laser properties like controllable microcavity modes and broad stoichiometry-dependent tunability of light-emitting/lasing colors,associated with the facile synthesizing method of monocrystalline CsPbI_(x)Br_(3−x) structures,make lead halide perovskites ideal materials for the development of wavelength-controlled microlasers toward practical photonic integration.
基金Supported by Guangdong Basic and Applied Basic Research Fund,China(2024A1515012429)。
文摘As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ener-gy,biomedicine,optoelectronic devices,and so on.At present,there have been scant reports on the application of NiTe_(2)in the field of ultrafast photonics.In this work,NiTe_(2)was synthesized by chemical vapor deposition(CVD)and integrated with a tapered optical fiber to achieve mode-locking in an erbium-doped fiber laser(EDFL)and a thu-lium-doped fiber laser(TDFL).The mode-locked EDFL exhibited a pulse width of 678 fs and an output power of 3.92 mW.The pulse width of mode-locked TDFL was estimated to have a pulse width of 694 fs with an output power of 21.64 mW.These results demonstrate that NiTe_(2)is an effective saturable absorber material with potential applica-tions in the field of ultrafast optics.
基金National Natural Science Foundation of China(12102410)Fund of National Key Laboratory of Shock Wave and Detonation Physics(JCKYS2022212005)。
文摘The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.
文摘Introduction:Surgeons typically prefer 270μm and 272μm laser probes in retrograde intrarenal surgery(RIRS)due to the reduced deflection capacity of flexible ureterorenoscopes when using larger probe diameters.This study aims to investigate the effects of 272 and 365μm holmium laser probes on operative time,clinical efficacy,and complication rates in RIRS.Materials and Methods:A total of 285 patients with proximal ureteral or kidney stones who met the inclusion criteria were enrolled in the study.Patients were divided into two groups based on laser probe thickness:272μm and 365μm.Stone-free rates,operative time,and complication rates were compared between the groups.Factors affecting stone-free rates were analyzed using multivariate logistic regression analysis.Results:Patient and stone characteristics were similar between the two groups.No significant differences were found in stone-free or complication rates.However,operative time was significantly shorter in the 365μm probe group.In univariate analysis,risk factors for postoperative residual stones included multi-calyceal stones,lower pole stones,high Hounsfield unit(HU)values on noncontrast computed tomography,and larger stone size.In multivariate analysis,independent prognostic factors for residual stones were identified as multi-calycal stones,lower pole stones,and high HU values.Conclusion:Compared to 272μm laser probes,operative time was shorter in surgeries performed with 365μm laser probes.The 365μm holmium laser can be effectively and safely used in the treatment of proximal ureteral and renal stones,demonstrating high clinical efficacy and safety.
基金funded by National Key R&D Program of China(Grant Nos.2024YFB3612200,2023YFB3609601,2022YFB3604300,2022YFB2802801,2022YFB3604802)Natural Science Foundation of China(Grant Nos.U24A20300,62174174,62274177,62275263,62325406,62374172,62304242,62304240,62404241)+4 种基金Youth Innovation Promotion Association of CAS(Grant Nos.2022323 and 2022324)Key R&D Program of Jiangsu Province(Grant No.BE2023018-2)Basic Research Program of Jiangsu(Grant No.BK20240126)Suzhou Science and Technology Program(Grant Nos.SYC2022089,ZXL2024379,and ZXL2024376)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515110482 and 2022A1515110004).
文摘Photonic crystal surface emitting lasers(PCSELs)utilize the Bragg diffraction of two-dimensional photonic crystals to achieve a single-mode output with a high power and a small divergence angle,and has recently attracted much attention^([1−3]).In 2023,Kyoto University reported GaAs-based 945 nm PCSELs with a continuous-wave(CW)single-mode output power of exceeding 50 W,and a narrow beam divergence angle of 0.05°,demonstrating a brightness of 1 GW·cm^(−2)·sr^(−1),which rivals those of the existing bulky lasers^([4]).
文摘Perovskite materials have emerged as promising candidates for various optoelectronic applications owing to their remarkable optoelectronic properties and easy solution processing.Metal halide perovskites,as direct-bandgap semiconductors,show an excellent class of optical gain media,which makes them applicable to the development of low-threshold or even thresholdless lasers.This mini review explores recent advances in perovskite-based laser technology,which have led to chiral single-mode microlasers,low-threshold,external-cavity-free lasing devices at room temperature,and other innovative device architectures.Including self-assembled CsPbBr3 microwires that enable edge lasing.Realized continuous-wave(CW)pumped lasing by perovskite material pushes the research of electrically driven perovskite lasers.The capacity to regulate charge transport in halide perovskites further enhances their applicability in optoelectronic systems.The ongoing integration of perovskite materials with advanced photonic structures holds excellent potential for future innovations in laser technology and photovoltaics.We also highlight the transformative potential of perovskite materials in advancing the next generation of efficient and integrated optoelectronic devices.
基金supported by the National Key Research and Development Program of China(2020YFA0714504,2019YFA0709100 to T.C.)the program of the National Natural Science Foundation of China(No.62105054 to T.C.)+1 种基金the New Cornerstone Science Foundation(AoE/P502/20 to S.Z.)the Research Grants Council of Hong Kong(17315522 to S.Z.).
文摘Perovskite semiconductors show great promise as gain media for all-solution-processed single-mode microlasers.However,despite the recent efforts to improve their lasing performance,achieving tunable single-mode microlasers remains challenging.In this work,we address this challenge by demonstrating a tunable vertical cavity surface emitting laser(VCSEL)employing a tunable gain medium of halide phase-change perovskites-specifically MAPbI_(3) perovskite,sandwiched between two highly reflective mirrors composed of bottom-distributed Bragg reflectors(DBRs).This VCSEL possesses single-mode lasing emission with a low threshold of 23.5μJ cm^(−2) under 160 K,attributed to strong optical confinement in the high-quality(Q)cavity.Upon the phase change of MAPbI_(3) perovskite,both its gain and dielectric constant changes dramatically,enabling a wide(Δλ>9 nm)and temperature-sensitive(0.30 nm K^(−1) rate)spectral tunability of lasing mode in the near-infrared(N-IR)region.The laser displays excellent stability,demonstrating an 80%lifetime of>2.4×107 pulses excitation.Our findings may provide a versatile platform for the next generation of tunable coherent light sources.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602502)the National Natural Science Foundation of China(Grant No.12450404).
文摘Rotational dynamics simulations of neutral O_(2)molecules driven by linearly,elliptically and circularly polarized femtosecond pulsed lasers are carried out using a full quantum time-dependent wave packet evolution method.Here,the direction of laser propagation is set along the z axis,and the polarization plane is restricted to the xy plane.The results indicate that the alignment of O_(2)molecules in the z direction is weakly affected by varying the ellipticity when the total laser intensity is held constant.For rotation within the xy plane,the linearly polarized laser significantly excites rotational motion,with the degree of excitation increasing as the ellipticity increases.In contrast,under the influence of a circularly polarized laser,the angular distribution of O_(2)molecules in the xy plane remains isotropic.Additionally,the effects of the initial rotational quantum number,the temperature of the O_(2)molecules and the nuclear spin on laser-induced alignment are discussed.
文摘The authors report the development of aλ~4.1μm quantum cascade laser grown by metal-organic chemical vapor deposition using strain-balanced In Ga As/In Al As materials.A device with a 7.5 mm cavity length and 6.5μm ridge width,bonded to an aluminum nitride heatsink,achieves maximum output powers of 3.4 W at 288 K in pulsed mode and 1.6 W at288 K in continuous-wave(CW)operation,with corresponding maximum wall-plug efficiencies of 14.8%and 9.3%.A kink is observed in the power–current curve under CW operation,which is absent in pulsed operation.Near-field results show that in CW operation,the horizontal beam quality factor M2fluctuates with current,indicating mode instability and highorder lateral mode excitation,while in pulsed mode,the horizontal M2remains stable around 1.3 as the current increases from 1.4 A to 1.9 A.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(agreement No.075-15-2021-1349)。
文摘Synchrotron method of resonant X-ray reflectivity 2D mapping has been applied to study ultrathin epitaxial layers of WS_(2)grown by pulsed laser deposition on Al_(2)O_(3)(0001)substrates.The measurements were carried out across the L absorption edge of tungsten to perform depth-dependent element-selective analysis sensitive to potential chemical modification of the WS_(2)layer in ambient conditions.Despite the few monolayer thickness of the studied film,the experimentally measured maps of reflectance as a function of incident angle and photon energy turned out to be quite informative showing well-pronounced interference effects near W absorption edge at 10210 eV.The synchrotron studies were complemented with conventional non-resonant reflectance measurements carried out in the laboratory at a fixed photon energy corresponding to Cu Kαemission.The reconstruction of the depth and energy dependent scattering length density within the studied multilayers was carried out using the OpenCL empowered fitting software utilizing spectral shaping algorithm which does not rely on the pre-measured reference absorption spectra.A thin WO_(x) layer has been revealed at the surface of the WS_(2)layer pointing out to the effect of water assisted photo-oxidation reported in a number of works related to ultrathin layers of transition metal dichalcogenides.
基金supported by the National Natural Science Foundation of China(Grant No.61975107)the Natural Science Foundation of Shanghai(Grant Nos.24ZR1422000 and 20ZR1471500),and the“111”Project(Grant No.D20031).
文摘Ultra-narrow bandwidth mode-locked lasers with tunable pulse duration can be versatile light sources for diverse applications.However,the spectral-temporal control of a narrow bandwidth mode-locked laser is challenging due to limited gain and nonlinearity,hindering practical applications of such lasers.We demonstrate a pulse duration widely tunable mode-locked ultra-narrow bandwidth laser using a composite filtering mechanism and a single-wall carbon nanotube.The laser pulse duration can be adjusted from 481 ps to 1.38 ns,which is the widest tuning range achieved in narrow-bandwidth passively mode-locked lasers.When the pulse duration is 1.38 ns,the corresponding spectral width reaches 4 pm(502 MHz).Numerical simulations support the experimental results and show that the evolution of long pulses in the laser cavity behaves similarly to a quasi-continuous wave with a low breathing ratio.We have not only designed a simple and flexible tunable scheme for the dilemma of spectral-temporal control in narrow-bandwidth mode-locked fiber lasers but also provided a unique and idealized light source for various applications that takes into account robust output.
基金supported by the Extreme Light Infrastructure Nuclear Physics(ELI-NP)Phase Ⅱ,a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund—the Competitiveness Operational Programme(1/07.07.2016,COP,ID 1334)the Romanian Ministry of Research and Innovation:PN23210105(Phase 2,the Program Nucleu),ELI-RO grants Proiectul ELI-RO/RDI_2024_AMAP,ELI-RO_RDI_2024_LaLuThe,ELIRO_RDI_2024_SPARC+4 种基金ELI10/01.10.2020 of the Romanian Governmentthe European Union,the Romanian Governmentthe Health Program,within the project“Medical Applications of High-Power Lasers—Dr.LASER”SMIS Code:326475the IOSIN funds for research infrastructures of national interest.
文摘We propose a novel scheme for the population and depletion of nuclear isomers.This scheme combines the γ photons with energiesà 10 keV emitted during the interaction of a contemporary high-intensity laser pulse with a plasma and one or multiple photon beams supplied by intense lasers.Owing to nonlinear effects,two-or multiphoton absorption dominates over the conventional multistep one-photon process for an optimized γ flash.Moreover,this nonlinear effect can be greatly enhanced with the help of externally supplied low-energy photons coming from another laser.These low-energy photons act such that the effective cross-section experienced by the γ photons becomes tunable,growing with the intensity I_(0) of the beam.Assuming I_(0)~10^(18) W·cm^(-2) for the photon beam,an effective cross-section as large as 10^(-21)-10^(-28) cm^(2) for the γ photons can be achieved.Thus,with state-of-the-art 10 PW laser facilities,the yields from two-photon absorption can reach 10^(6)-10^(9) isomers per shot for selected states that are separated from their ground state by E2 transitions.Similar yields for transitions with higher multipolarities can be accommodated by multiphoton absorption with additional photons provided.
基金support from the National Natural Science Foundation of China(Grant Nos.11775204 and 12105269)the Presidential Foundation of the China Academy of Engineering Physics(Grant No.YZJJLX2018011)。
文摘The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill in foam hohlraums with a wall density of 0.8 g/cm^(3) than in solid gold hohlraums.The radiation temperatures at different angles confirm these results.Simulation results show that the expanding plasma density in the foam hohlraums is lower than in the solid hohlraums,resulting in less expanding plasma emission and higher radiation temperature.Thus,foam gold hohlraums have advantages in reducing wall plasma filling and improving X-ray transmission,which has potential applications in achieving a higher fusion yield.
基金supported by the National High Technology Research and Development Program of China.
文摘Based on the moiré effect and the Fresnel diffraction theory, a novel technique for diagnosing the beam properties is presented and analyzed, which is especially suitable for X-ray lasers. The method makes it possible, in a one-shot experimental measurement, to determine the beam quality factor M2, the effective radius of curvature, the beam width, the far-field divergence, and the waist location and radius as well as the spatial coherence and its evolution. Numerical simulation proves the validity of the method. Note that the novel moiré technique opens an efficient road, for the first time, to fully diagnose the spatial properties of X-ray lasers.