期刊文献+
共找到351,583篇文章
< 1 2 250 >
每页显示 20 50 100
Tests of Solar X-Ray Image Reconstruction:Study of X-Ray Imaging Algorithms and Reconstruction Parameters 被引量:1
1
作者 Wenhui Yu Yang Su +2 位作者 Zhentong Li Wei Chen Weiqun Gan 《Research in Astronomy and Astrophysics》 2025年第3期90-110,共21页
Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method... Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method,an indirect imaging technique that requires algorithms to reconstruct and optimize images.During the last decade,a variety of algorithms have been developed and improved.However,it is difficult to quantitatively evaluate the image quality of different solutions without a true,reference image of observation.How to choose the values of imaging parameters for these algorithms to get the best performance is also an open question.In this study,we present a detailed test of the characteristics of these algorithms,imaging dynamic range and a crucial parameter for the CLEAN method,clean beam width factor(CBWF).We first used SDO/AIA EUV images to compute DEM maps and calculate thermal X-ray maps.Then these realistic sources and several types of simulated sources are used as the ground truth in the imaging simulations for both RHESSI and ASO-S/HXI.The different solutions are evaluated quantitatively by a number of means.The overall results suggest that EM,PIXON,and CLEAN are exceptional methods for sidelobe elimination,producing images with clear source details.Although MEM_GE,MEM_NJIT,VIS_WV and VIS_CS possess fast imaging processes and generate good images,they too possess associated imperfections unique to each method.The two forward fit algorithms,VF and FF,perform differently,and VF appears to be more robust and useful.We also demonstrated the imaging capability of HXI and available HXI algorithms.Furthermore,the effect of CBWF on image quality was investigated,and the optimal settings for both RHESSI and HXI were proposed. 展开更多
关键词 techniques image processing-Sun flares-Sun x-rays gamma rays
在线阅读 下载PDF
Attention U-Net for Precision Skeletal Segmentation in Chest X-Ray Imaging:Advancing Person Identification Techniques in Forensic Science
2
作者 Hazem Farah Akram Bennour +3 位作者 Hama Soltani Mouaaz Nahas Rashiq Rafiq Marie Mohammed Al-Sarem 《Computers, Materials & Continua》 2025年第11期3335-3348,共14页
This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhance... This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhanced with gated attention mechanisms,to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details.By isolating skeletal structures which remain stable over time compared to soft tissues,this method leverages bones as reliable biometric markers for identity verification.The model integrates custom-designed encoder and decoder blocks with attention gates,achieving high segmentation precision.To evaluate the impact of architectural choices,we conducted an ablation study comparing Attention U-Net with and without attentionmechanisms,alongside an analysis of data augmentation effects.Training and evaluation were performed on a curated chest X-ray dataset,with segmentation performance measured using Dice score,precision,and loss functions,achieving over 98% precision and 94% Dice score.The extracted bone structures were further processed to derive unique biometric patterns,enabling robust and privacy-preserving person identification.Our findings highlight the effectiveness of attentionmechanisms in improving segmentation accuracy and underscore the potential of chest bonebased biometrics in forensic and medical imaging.This work paves the way for integrating artificial intelligence into real-world forensic workflows,offering a non-invasive and reliable solution for post-mortem identification. 展开更多
关键词 Bone extraction segmentation of skeletal structures chest x-ray images person identification deep learning attention mechanisms U-Net
在线阅读 下载PDF
Parallax-free panoramic X-ray imaging combined with minimally invasive plate osteosynthesis for treating proximal humeral shaft fractures
3
作者 Wen-Jing Cheng Jing-Shun Lu +2 位作者 Zhou-Shan Tao Jia-Bing Xie Min Yang 《World Journal of Orthopedics》 2025年第5期44-50,共7页
BACKGROUND The objective of this study was to evaluate the use of combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with minimally invasive plate osteosynthesis(MIPO)in the man... BACKGROUND The objective of this study was to evaluate the use of combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with minimally invasive plate osteosynthesis(MIPO)in the management of proximal humeral shaft fractures.AIM To evaluate parallax-free panoramic X-ray images during surgery.METHODS A retrospective series of 17 proximal humeral shaft fractures were treated using combined parallax-free panoramic X-ray imaging during surgery by enabling the mobile C-arm with MIPO.The operating time and radiation exposure time were recorded,and early postoperative physical therapy and partial weight bearing were encouraged.Patients were followed at regular intervals and evaluated radiographically and clinically.RESULTS The mean operating time and radiation time were 73(range,49-95)minutes and 57(range:36-98)seconds,respectively.No complications occurred during the operation.All fractures healed at an average of 16.9(range:15-23)weeks.The average Constant-Murley score for all the patients was 89.5(range:75-100)points.None of the patients showed symptoms of vascular or nerve damage or wound infection.Three months after the operation,none of the patients developed subacromial impingement syndrome.No loosening or fracture of the implants occurred.The frontal and lateral radiographs showed good alignment.CONCLUSION We consider that MIPO with combined parallax-free panoramic X-ray imaging during surgery is an efficient method for treating proximal humeral shaft fractures,and could significantly reduce operative morbidity as well as lower the rate of intra-and postoperative complications. 展开更多
关键词 Minimally invasive plate osteosynthesis Proximal humeral shaft fractures Panoramic x-ray images COMPLICATIONS
暂未订购
Hydrophobic long-chain two-dimensional perovskite scintillators for underwater X-ray imaging 被引量:2
4
作者 Jin-Xiao Zheng Zi-An Zhou +6 位作者 Tiao Feng Hui Li Cheng-Hua Sun NüWang Yang Tian Yong Zhao Shu-Yun Zhou 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期175-185,共11页
The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging... The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development. 展开更多
关键词 Two-dimensional perovskite HYDROPHOBIC SCINTILLATORS Underwater x-ray imaging Underwater nondestructive testing technology
原文传递
Insights into the hydrogen evolution reaction in vanadium redox flow batteries:A synchrotron radiation based X-ray imaging study 被引量:1
5
作者 Kerstin Köble Alexey Ershov +7 位作者 Kangjun Duan Monja Schilling Alexander Rampf Angelica Cecilia TomášFaragó Marcus Zuber Tilo Baumbach Roswitha Zeis 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期132-144,共13页
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo... The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems. 展开更多
关键词 Vanadium redox flow battery Synchrotron x-ray imaging Tomography Hydrogen evolution reaction Gas bubbles Deep learning
在线阅读 下载PDF
Two-Dimensional Perovskite Single Crystals for High-Performance X-ray Imaging and Exploring MeV X-ray Detection 被引量:1
6
作者 Xieming Xu Yiheng Wu +5 位作者 Yi Zhang Xiaohui Li Fang Wang Xiaoming Jiang Shaofan Wu Shuaihua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期139-146,共8页
Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,bu... Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications. 展开更多
关键词 MeV x-ray detection single-crystal x-ray detectors two-dimensional perovskites x-ray imaging
在线阅读 下载PDF
Fast X-ray imaging beamline at SSRF 被引量:1
7
作者 Ke Li Hong-Lan Xie +5 位作者 Ya-Nan Fu Fei-Xiang Wang Guo-Hao Du Jian-Feng ji Biao Deng Ti-Qiao Xiao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期68-81,共14页
The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and... The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023. 展开更多
关键词 Multiple time-scale X ray imaging Single-pulse X ray imaging Dynamic 2D imaging Dynamic micro-CT
在线阅读 下载PDF
Time lapse in situ X-ray imaging of failure in structural materials under cyclic loads and extreme environments 被引量:3
8
作者 Weijian Qian Shengchuan Wu +2 位作者 Liming Lei Qiaodan Hu Changkui Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期80-103,共24页
Damage evolution characterization and performance evaluation under realistic conditions are essential to ensure reliable operation of critical safety components.However,previous studies focus on the surface detection ... Damage evolution characterization and performance evaluation under realistic conditions are essential to ensure reliable operation of critical safety components.However,previous studies focus on the surface detection because of very limited penetration capacity of nondestructive testing facilities.Here,we review the recent progress of material damage mechanism by various in situ testing rigs that are compat-ible with laboratory and synchrotron radiation X-ray facilities.Then,taking metallic alloys and composites as model materials,we demonstrate the unique advantages of in situ X-ray three-dimensional tomography in unveiling complex failure mechanisms,quantifying crack growth driving forces and crack closure phenomena,and elucidating the strengthening/degrading effects from microstructure and environment on structural material degradation.Finally,we also discuss the ongoing direction of in situ multi-scale visualization and characterization with the development of advanced high-energy X-ray facilities,the improvement of in situ devices and sample environments,the demand of high-throughput tests,and the processing and application of massive test data. 展开更多
关键词 In situ experiments Fatigue damage mechanism Correlative characterization x-ray computed tomography Lightweight structural materials
原文传递
Anisotropy of Trabecular Bone from Ultra-Distal Radius Digital X-Ray Imaging: Effects on Bone Mineral Density and Age
9
作者 Jian-Feng Chen 《Open Journal of Radiology》 2024年第1期14-23,共10页
Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions... Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age. 展开更多
关键词 ANISOTROPY Trabecular Bone Score Bone Mineral Density Ultra-Distal Radius Digital x-ray image
暂未订购
In situ X-ray imaging and numerical modeling of damage accumulation in C/SiC composites at temperatures up to 1200℃ 被引量:1
10
作者 Weijian Qian Wanen Zhang +5 位作者 Shengchuan Wu Yue Hu Xiangyu Zhang Qiaodan Hu Shaoming Dong Shantung Tu 《Journal of Materials Science & Technology》 CSCD 2024年第30期65-77,共13页
Carbon fiber reinforced silicon carbide matrix composites(C/SiC)have emerged as key materials for ther-mal protection systems owing to their high strength-to-weight ratio,high-temperature durability,resis-tance to oxi... Carbon fiber reinforced silicon carbide matrix composites(C/SiC)have emerged as key materials for ther-mal protection systems owing to their high strength-to-weight ratio,high-temperature durability,resis-tance to oxidation,and outstanding reliability.However,manufacturing defects deteriorate the mechani-cal response of these composites under extreme thermal-force coupling conditions,prompting significant research attention.This study demonstrates a customized in situ loading device compatible with syn-chrotron radiation facilities,enabling high spatial and temporal resolution recording of internal material damage evolution and failure behavior under thermal-force coupling conditions.Infrared thermal radia-tion units in a confocal configuration were used to create ultra-high-temperature environments,offering advantages of compactness,rapid heating,and versatility.In situ tensile tests were conducted on C/SiC samples in a nitrogen atmosphere at both room temperature and 1200℃.The high-resolution image data demonstrate various failure phenomena,such as matrix cracking and pore linkage.Image-based fi-nite element simulations indicate that the temperature-dependent variation of the failure mechanism is attributable to thermal residual stresses and defect-induced stress concentrations.This work seamlessly integrates extreme mechanical testing methods with in situ observation techniques,providing a compre-hensive solution for accurately quantifying crack initiation,pore connection,and failure behavior of C/SiC composites. 展开更多
关键词 Ceramic matrix composites Extreme environments x-ray computed tomography Internal damage evolution image-based finite element method
原文传递
Methodology development and application of X-ray imaging beamline at SSRF 被引量:12
11
作者 Hong-Lan Xie Biao Deng +7 位作者 Guo-Hao Du Ya-Nan Fu Han Guo Yan-Ling Xue Guan-Yun Peng Fen Tao Ling Zhang Ti-Qiao Xiao 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第10期74-94,共21页
This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline(BL13W1)at Shanghai Synchrotron Radiation Facility in the... This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline(BL13W1)at Shanghai Synchrotron Radiation Facility in the past 5 years.The photon energy range of the beamline is 8–72.5 keV.Several sets of X-ray imaging detectors with different pixel sizes(0.19–24 lm)are used to realize X-ray microcomputed tomography(X-ray micro-CT)and X-ray in-line phase-contrast imaging.To satisfy the requirements of user experiments,new X-ray imaging methods and image processing techniques are developed.In vivo dynamic micro-CT experiments with living insects are performed in 0.5 s(sampling rate of 2 Hz,2 tomograms/s)with a monochromatic beam from a wiggler source and in 40 ms(sampling rate of 25 Hz,25 tomograms/s)with a white beam from a bending magnet source.A new X-ray imaging method known as move contrast X-ray imaging is proposed,with which blood flow and moving tissues in raw images can be distinguished according to their moving frequencies in the time domain.Furthermore,X-ray speckle-tracking imaging with twice exposures to eliminate the edge enhancement effect is developed.A high-precision quantification method is realized to measure complex three-dimensional blood vessels obtained via X-ray micro-CT.X-ray imaging methods such as three-dimensional X-ray diffraction microscopy,small-angle X-ray scattering CT,and X-ray fluorescence CT are developed,in which the X-ray micro-CT imaging method is combined with other contrast mechanisms such as diffraction,scattering,and fluorescence contrasts respectively.Moreover,an X-ray nano-CT experiment is performed with a 100 nm spatial resolution.Typical user experimental results from the fields of material science,biomedicine,paleontology,physics,chemistry,and environmental science obtained on the beamline are provided. 展开更多
关键词 x-ray imaging x-ray in-line phase-contrast imaging x-ray micro-CT Dynamic micro-CT x-ray speckle-tracking imaging 3DXRD SAXS-CT x-ray fluorescence CT x-ray nano-CT Move contrast x-ray imaging
在线阅读 下载PDF
Development of a toroidal soft x-ray imaging system and application for investigating three-dimensional plasma on J-TEXT
12
作者 赵传旭 李建超 +9 位作者 张晓卿 王能超 丁永华 杨州军 江中和 严伟 李杨波 毛飞越 任正康 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期94-99,共6页
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat... A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma. 展开更多
关键词 SXR imaging J-TEXT tokamak three-dimensional measurement MHD
在线阅读 下载PDF
Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing:A Review 被引量:6
13
作者 Naying An Sansan Shuai +3 位作者 Tao Hu Chaoyue Chen Jiang Wang Zhongming Ren 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第1期25-48,共24页
Additive manufacturing(AM)is a rapid prototyping technology based on the idea of discrete accumulation which off ers an advantage of economically fabricating a component with complex geometries in a rapid design-to-ma... Additive manufacturing(AM)is a rapid prototyping technology based on the idea of discrete accumulation which off ers an advantage of economically fabricating a component with complex geometries in a rapid design-to-manufacture cycle.However,various internal defects,such as balling,cracks,residual stress and porosity,are inevitably occurred during AM due to the complexity of laser/electron beam-powder interaction,rapid melting and solidification process,and microstructure evolution.The existence of porosity defects can potentially deteriorate the mechanical properties of selective laser melting(SLM)components,such as material stiff ness,hardness,tensile strength,and fatigue resistance performance.Synchrotron X-ray imaging and diffraction are important non-destructive means to elaborately characterize the internal defect characteristics and mechanical properties of AM parts.This paper presents a review on the application of synchrotron X-ray in identifying and verifying the quality and requirement of AM parts.Defects,microstructures and mechanical properties of printed components characterized by synchrotron X-ray imaging and diffraction are summarized in this review.Subsequently,this paper also elaborates on the online characterization of the evolution of the microstructure during AM using synchrotron X-ray imaging,and introduces the method for measuring AM stress by X-ray diffraction(XRD).Finally,the future application of synchrotron X-ray characterization in the AM is prospected. 展开更多
关键词 Additive manufacturing Synchrotron x-ray imaging x-ray diffraction Defect formation Mechanical properties Residual stress
原文传递
Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies 被引量:6
14
作者 Zongye Ding Naifang Zhang +3 位作者 Liao Yu Wenquan Lu Jianguo Li Qiaodan Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第2期145-168,共24页
The liquid/solid(L/S)interface of dissimilar metals is critical to the microstructure,mechanical strength,and structural integrity of interconnects in many important applications such as electronics,automotive,aeronau... The liquid/solid(L/S)interface of dissimilar metals is critical to the microstructure,mechanical strength,and structural integrity of interconnects in many important applications such as electronics,automotive,aeronautics,and astronautics,and therefore has drawn increasing research interests.To design preferential microstructure and optimize mechanical properties of the interconnects,it is crucial to understand the formation and growth mechanisms of diversified structures at the L/S interface during interconnecting.In situ synchrotron radiation or tube-generated X-ray radiography and tomography technologies make it possible to observe the evolution of the L/S interface directly and therefore have greatly propelled the research in this field.Here,we review the recent progress in understanding the L/S interface behaviors using advanced in situ X-ray imaging techniques with a particular focus on the following two issues:(1)interface behaviors in the solder joints for microelectronic packaging including the intermetallic compounds(IMCs)during refl ow,Sn dendrites,and IMCs during solidification and refl ow porosities and(2)growth characteristics and morphological transition of IMCs in the interconnect of dissimilar metals at high temperature.Furthermore,the main achievements and future research perspectives in terms of metallurgical bonding mechanisms under complex conditions with improved X-ray sources and detectors are remarked and discussed. 展开更多
关键词 Liquid/solid interface Metallurgical bonding Dissimilar interconnects In situ x-ray imaging SOLIDIFICATION Microelectronic packaging
原文传递
A fast and adaptive method for automatic weld defect detection in various real-time X-ray imaging systems 被引量:10
15
作者 邵家鑫 都东 +2 位作者 石涵 常保华 郭桂林 《China Welding》 EI CAS 2012年第1期8-12,共5页
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me... A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems. 展开更多
关键词 non-destructive testing real-time x-ray imaging weld defect automatie detection
在线阅读 下载PDF
Recent Progress of Synchrotron X-Ray Imaging and Diffraction on the Solidification and Deformation Behavior of Metallic Materials 被引量:4
16
作者 Youhong Peng Kesong Miao +4 位作者 Wei Sun Chenglu Liu Hao Wu Lin Geng Guohua Fan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第1期3-24,共22页
Characterizing the microstructure and deformation mechanism associated with the performances and properties of metallic materials is of great importance in understanding the microstructure-property relationship.The pa... Characterizing the microstructure and deformation mechanism associated with the performances and properties of metallic materials is of great importance in understanding the microstructure-property relationship.The past few decades have witnessed the rapid development of characterization techniques from optical microscopy to electron microscopy,although these conventional methods are generally limited to the sample surface because of the intrinsic opaque nature of metallic materials.Advanced synchrotron radiation(SR)facilities can produce X-rays with strong penetrability and high spatiotemporal resolution,and thereby enabling the non-destructive visualization of full-field structural information in three dimensions.Tremendous endeavors were devoted to the 3 rd generation SR over the past three decades,in which X-ray beams have been focused down to 100 nm.In this paper,recent progresses on SR-related characterization technologies were reviewed,with particular emphases on the fundamentals of synchrotron X-ray imaging and synchrotron X-ray diffraction,as well as their applications in the in situ observations of material preparation(e.g.,in situ dendrite growth during solidification)and service under extreme environment(e.g.,in situ mechanics).Future innovations toward next-generation SR and newly emerging SRbased technologies such as dark-field X-ray microscopy and Bragg coherent X-ray diffraction imaging were also advocated. 展开更多
关键词 Synchrotron radiation Synchrotron x-ray imaging Synchrotron x-ray diffraction Metallic alloys
原文传递
Detecting Lumbar Implant and Diagnosing Scoliosis from Vietnamese X-Ray Imaging Using the Pre-Trained API Models and Transfer Learning 被引量:4
17
作者 Chung Le Van Vikram Puri +1 位作者 Nguyen Thanh Thao Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第1期17-33,共17页
With the rapid growth of the autonomous system,deep learning has become integral parts to enumerate applications especially in the case of healthcare systems.Human body vertebrae are the longest and complex parts of t... With the rapid growth of the autonomous system,deep learning has become integral parts to enumerate applications especially in the case of healthcare systems.Human body vertebrae are the longest and complex parts of the human body.There are numerous kinds of conditions such as scoliosis,vertebra degeneration,and vertebrate disc spacing that are related to the human body vertebrae or spine or backbone.Early detection of these problems is very important otherwise patients will suffer from a disease for a lifetime.In this proposed system,we developed an autonomous system that detects lumbar implants and diagnoses scoliosis from the modified Vietnamese x-ray imaging.We applied two different approaches including pre-trained APIs and transfer learning with their pre-trained models due to the unavailability of sufficient x-ray medical imaging.The results show that transfer learning is suitable for the modified Vietnamese x-ray imaging data as compared to the pre-trained API models.Moreover,we also explored and analyzed four transfer learning models and two pre-trained API models with our datasets in terms of accuracy,sensitivity,and specificity. 展开更多
关键词 Lumbar implant diagnosing scoliosis x-ray imaging TRANSFER
在线阅读 下载PDF
Nucleation and growth of Fe-rich phases in Al-5Ti-1B modified Al-Fe alloys investigated using synchrotron X-ray imaging and electron microscopy 被引量:2
18
作者 Yuliang Zhao Weiwen Zhang +7 位作者 Dongfu Song Bo Lin Fanghua Shen Donghai Zheng ChunXiao Xie Zhenzhong Sun Yanan Fu Runxia Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第21期84-99,共16页
Plate-like Fe-rich intermetallic phases directly influence the mechanical properties of recycled Al alloys;thus, many attempts have been made to modify the morphology of these phases. Through synchrotron X-ray imaging... Plate-like Fe-rich intermetallic phases directly influence the mechanical properties of recycled Al alloys;thus, many attempts have been made to modify the morphology of these phases. Through synchrotron X-ray imaging and electron microscopy, the underlying nucleation and growth mechanisms of Fe-rich phases during the solidification of Al-5 Ti-1 B-modified Al-2 Fe alloys were revealed in this study. The results showed that the Al-5 Ti-1 B grain refiner as well as the applied pressure both resulted in reduction of the size and number of primary Al_(3)Fe phases and promoted the formation of eutectic Al_(6)Fe phases.The tomography results demonstrated that Al-5 Ti-1 B changed the three-dimensional(3 D) morphology of primary Fe-rich phases from rod-like to branched plate-like, while a reduction in their thickness and size was also observed. This was attributed to the fact that Ti-containing solutes in the melts inhibit the diffusion of Fe atoms and the Al_(3)Fe twins produce re-entrant corner on the twin boundaries along the growth direction. Moreover, the TiB_(2) provides possible nucleation sites for Al_6Fe phases. The nucleation mechanism of Fe-rich phases is discussed in terms of experimental observations and crystallography calculations. The decrease in the lattice mismatch between TiB_(2) and Al_(6)Fe phases was suggested, which promoted the transformation of Al_(3)Fe to Al_(6)Fe phases. 展开更多
关键词 Al alloys Synchrotron x-ray imaging Fe-rich phases Grain refinement Nucleation and growth
原文传递
Centimeter-sized Cs_(3)Cu_(2)I_(5)single crystals grown by oleic acid assisted inverse temperature crystallization strategy and their films for high-quality X-ray imaging 被引量:2
19
作者 Tao Chen Xin Li +9 位作者 Yong Wang Feng Lin Ruliang Liu Wenhua Zhang Jie Yang Rongfei Wang Xiaoming Wen Bin Meng Xuhui Xu Chong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期382-389,共8页
Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r... Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging. 展开更多
关键词 Inverse temperature crystal growth Cs_(3)Cu_(2)I_(5)single crystal Vapor deposition Cs_(3)Cu_(2)I_(5)films x-ray imaging
在线阅读 下载PDF
The new X-ray imaging and biomedical application beamline BL13HB at SSRF 被引量:2
20
作者 Jian‑Feng Ji Han Guo +6 位作者 Yan‑Ling Xue Rong‑Chang Chen Ya‑Nan Fu Guo‑Hao Du Biao Deng Hong‑Lan Xie Ti‑Qiao Xiao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期190-205,共16页
A new X-ray imaging and biomedical application beamline(BL13HB)has been implemented at the Shanghai Radiation Synchrotron Facility(SSRF)as an upgrade to the old X-ray imaging and biomedical application beamline(BL13W1... A new X-ray imaging and biomedical application beamline(BL13HB)has been implemented at the Shanghai Radiation Synchrotron Facility(SSRF)as an upgrade to the old X-ray imaging and biomedical application beamline(BL13W1).This is part of the Phase II construction project of the SSRF.The BL13HB is dedicated to 2D and 3D static and dynamic X-ray imaging,with a field of view of up to 48.5 mm×5.2 mm and spatial resolution as high as 0.8μm.A super-bending magnet is used as the X-ray source in BL13HB,which has a maximum magnetic field of 2.293 T.The energy range of monochromatic X-ray photons from a double-multiplayer monochromator was 8–40 keV,and the white beam mode was provided on the beamline for dynamic X-ray imaging and dynamic X-ray micro-CT.While maintaining the previous experimental setup of BL13W1,new equipment was added to the beamline experimental station.The beamline is equipped with different sets of X-ray imaging detectors for several experimental methods such as micro-CT,dynamic micro-CT,and pair distribution function.The experimental station of BL13HB is designed specifically for various in situ dynamic experiments,and BL13HB has been open to users since June 2021. 展开更多
关键词 x-ray imaging Dynamic micro-CT Shanghai Synchrotron Radiation Facility
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部