Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is propose...Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.展开更多
Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image qual...Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image quality of the reconstruction is still difficult,which is particularly useful for scheme design of X-ray imaging systems,testing and improvement of imaging algorithms,and scientific research of X-ray sources.Currently,there is no specified method to quantitatively evaluate the quality of X-ray image reconstruction and the point-spread function(PSF)of an X-ray imager.In this paper,we propose percentage proximity degree(PPD)by considering the imaging characteristics of X-ray image reconstruction and in particular,sidelobes and their effects on imaging quality.After testing a variety of imaging quality assessments in six aspects,we utilized the technique for order preference by similarity to ideal solution to the indices that meet the requirements.Then we develop the final quality index for X-ray image reconstruction,QuIX,which consists of the selected indices and the new PPD.QuIX performs well in a series of tests,including assessment of instrument PSF and simulation tests under different grid configurations,as well as imaging tests with RHESSI data.It is also a useful tool for testing of imaging algorithms,and determination of imaging parameters for both RHESSI and ASO-S/Hard X-ray Imager,such as field of view,beam width factor,and detector selection.展开更多
Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method...Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method,an indirect imaging technique that requires algorithms to reconstruct and optimize images.During the last decade,a variety of algorithms have been developed and improved.However,it is difficult to quantitatively evaluate the image quality of different solutions without a true,reference image of observation.How to choose the values of imaging parameters for these algorithms to get the best performance is also an open question.In this study,we present a detailed test of the characteristics of these algorithms,imaging dynamic range and a crucial parameter for the CLEAN method,clean beam width factor(CBWF).We first used SDO/AIA EUV images to compute DEM maps and calculate thermal X-ray maps.Then these realistic sources and several types of simulated sources are used as the ground truth in the imaging simulations for both RHESSI and ASO-S/HXI.The different solutions are evaluated quantitatively by a number of means.The overall results suggest that EM,PIXON,and CLEAN are exceptional methods for sidelobe elimination,producing images with clear source details.Although MEM_GE,MEM_NJIT,VIS_WV and VIS_CS possess fast imaging processes and generate good images,they too possess associated imperfections unique to each method.The two forward fit algorithms,VF and FF,perform differently,and VF appears to be more robust and useful.We also demonstrated the imaging capability of HXI and available HXI algorithms.Furthermore,the effect of CBWF on image quality was investigated,and the optimal settings for both RHESSI and HXI were proposed.展开更多
The instance segmentation of impacted teeth in the oral panoramic X-ray images is hotly researched.However,due to the complex structure,low contrast,and complex background of teeth in panoramic X-ray images,the task o...The instance segmentation of impacted teeth in the oral panoramic X-ray images is hotly researched.However,due to the complex structure,low contrast,and complex background of teeth in panoramic X-ray images,the task of instance segmentation is technically tricky.In this study,the contrast between impacted Teeth and periodontal tissues such as gingiva,periodontalmembrane,and alveolar bone is low,resulting in fuzzy boundaries of impacted teeth.Amodel based on Teeth YOLACT is proposed to provide amore efficient and accurate solution for the segmentation of impacted teeth in oral panoramic X-ray films.Firstly,a Multi-scale Res-Transformer Module(MRTM)is designed.In the module,depthwise separable convolutions with different receptive fields are used to enhance the sensitivity of the model to lesion size.Additionally,the Vision Transformer is integrated to improve the model’s ability to perceive global features.Secondly,the Context Interaction-awareness Module(CIaM)is designed to fuse deep and shallow features.The deep semantic features guide the shallow spatial features.Then,the shallow spatial features are embedded into the deep semantic features,and the cross-weighted attention mechanism is used to aggregate the deep and shallow features efficiently,and richer context information is obtained.Thirdly,the Edge-preserving perceptionModule(E2PM)is designed to enhance the teeth edge features.The first-order differential operator is used to get the tooth edge weight,and the perception ability of tooth edge features is improved.The shallow spatial feature is fused by linear mapping,weight concatenation,and matrix multiplication operations to preserve the tooth edge information.Finally,comparison experiments and ablation experiments are conducted on the oral panoramic X-ray image datasets.The results show that the APdet,APseg,ARdet,ARseg,mAPdet,and mAPseg indicators of the proposed model are 89.9%,91.9%,77.4%,77.6%,72.8%,and 73.5%,respectively.This study further verifies the application potential of the method combining multi-scale feature extraction,multi-scale feature fusion,and edge perception enhancement in medical image segmentation,which provides a valuable reference for future related research.展开更多
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph...Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.展开更多
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof...Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.展开更多
This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include pictu...This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms.展开更多
Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for deton...Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for detonation. For this, the study uses a set of 22,000 X-ray scanned images. After preprocessing with filtering techniques to improve image quality, deep learning methods, such as Convolutional Neural Networks (CNNs), are applied for classification. The results are also compared with Autoencoder and Random Forest algorithms. The results are validated on a second dataset, highlighting the advantages of the adopted approach. Baggage screening is a very important part of the risk assessment and security screening process at airports. Automating the detection of dangerous objects from passenger baggage X-ray scanners can speed up and increase the efficiency of the entire security procedure.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l...The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.展开更多
An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and s...An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and speed up the diagnosis of pneumonia,numerous approaches have been devised.To date,several methods have been employed to identify pneumonia.The Convolutional Neural Network(CNN)has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology.However,these methods are complex,inefficient,and imprecise to analyze a big number of datasets.In this paper,a new hybrid method for the automatic classification and identification of Pneumonia from chest X-ray images is proposed.The proposed method(ABOCNN)utilized theAfrican BuffaloOptimization(ABO)algorithmto enhanceCNNperformance and accuracy.The Weinmed filter is employed for pre-processing to eliminate unwanted noises from chest X-ray images,followed by feature extraction using the Grey Level Co-Occurrence Matrix(GLCM)approach.Relevant features are then selected from the dataset using the ABO algorithm,and ultimately,high-performance deep learning using the CNN approach is introduced for the classification and identification of Pneumonia.Experimental results on various datasets showed that,when contrasted to other approaches,the ABO-CNN outperforms them all for the classification tasks.The proposed method exhibits superior values like 96.95%,88%,86%,and 86%for accuracy,precision,recall,and F1-score,respectively.展开更多
The development of portable X-ray detectors is necessary for diagnosing fractures in unconscious patients in emergency situations.However,this is quite challenging because of the heavy weight of the scintillator and s...The development of portable X-ray detectors is necessary for diagnosing fractures in unconscious patients in emergency situations.However,this is quite challenging because of the heavy weight of the scintillator and silicon photodetectors.The weight and thickness of X-ray detectors can be reduced by replacing the silicon layer with an organic photodetectors.This study presents a novel bithienopyrroledione-based polymer donor that exhibits excellent photodetection properties even in a thick photoactive layer(~700 nm),owing to the symmetric backbone and highly soluble molecular structure of bithienopyrroledione.The ability of bithienopyrroledione-based polymer donor to strongly suppress the dark current density(Jd~10−10 A cm^(−2))at a negative bias(−2.0 V)while maintaining high responsivity(R=0.29 A W−1)even at a thickness of 700 nm results in a maximum shot-noise-limited specific detectivity of D_(sh)^(*)=2.18×10^(13)Jones in the organic photodetectors.Printed organic photodetectors are developed by slot-die coating for use in X-ray detectors,which exhibit D_(sh)^(*)=2.73×10^(12)Jones with clear rising(0.26 s)and falling(0.29 s)response times upon X-ray irradiation.Detection reliability is also proven by linear response of the X-ray detector,and the X-ray detection limit is 3 mA.展开更多
Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the joint.It is often challenging fo...Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the joint.It is often challenging for doctors to identify the exact model and manufacturer of the prosthesis when it is unknown.This paper proposes a transfer learning-based class imbalance-aware prosthesis detection method to detect the implant’s manufacturer automatically from shoulder X-ray images.The framework of the method proposes a novel training approach and a new set of batch-normalization,dropout,and fully convolutional layers in the head network.It employs cyclical learning rates and weighting-based loss calculation mechanism.These modifications aid in faster convergence,avoid local-minima stagnation,and remove the training bias caused by imbalanced dataset.The proposed method is evaluated using seven well-known pre-trained models of VGGNet,ResNet,and DenseNet families.Experimentation is performed on a shoulder implant benchmark dataset consisting of 597 shoulder X-ray images.The proposed method improves the classification performance of all pre-trained models by 10–12%.The DenseNet-201-based variant has achieved the highest classification accuracy of 89.5%,which is 10%higher than existing methods.Further,to validate and generalize the proposed method,the existing baseline dataset is supplemented to six classes,including samples of two more implant manufacturers.Experimental results have shown average accuracy of 86.7%for the extended dataset and show the preeminence of the proposed method.展开更多
Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The la...Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The late detection of tuberculosis could lead to danger to patient health,even death.Vietnamis one of the countries heavily affected by the COVID-19 pandemic,andmany residential areas as well as hospitals have to be isolated for a long time.Reality demands a fast and effective tuberculosis diagnosis solution to deal with the difficulty of accessingmedical services,such as an automatic tuberculosis diagnosis system.In our study,aiming to build that system,we were interested in the tuberculosis diagnosis problem from the chest X-ray images of Vietnamese patients.The chest X-ray image is an important data type to diagnose tuberculosis,and it has also received a lot of attention from deep learning researchers.This paper proposed a novel method for tuberculosis diagnosis and visualization using the deeplearning approach with a large Vietnamese X-ray image dataset.In detail,we designed our custom convolutional neural network for the X-ray image classification task and then analyzed the predicted result to provide visualization as a heat-map.To prove the performance of our network model,we conducted several experiments to compare it to another study and also to evaluate it with the dataset of this research.To support the implementation,we built a specific annotation system for tuberculosis under the requirements of radiologists in the Vietnam National Lung Hospital.A large experiment dataset was also from this hospital,and most of this data was for training the convolutional neural network model.The experiment results were evaluated regarding sensitivity,specificity,and accuracy.We achieved high scores with a training accuracy score of 0.99,and the testing specificity and sensitivity scores were over 0.9.Based on the X-ray image classification result,we visualize prediction results as heat-maps and also analyze them in comparison with annotated symptoms of radiologists.展开更多
Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image a...Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented.展开更多
The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individu...The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model.展开更多
X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image...X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image will happen,which restrict the application of X-ray image,especially in high accuracy fields.Distortion correction can be performed using algorithms that can be classified as global or local according to the method used,both having specific advantages and disadvantages.In this paper,a new global method based on support vector regression(SVR)machine for distortion correction is proposed.In order to test the presented method,a calibration phantom is specially designed for this purpose.A comparison of the proposed method with the traditional global distortion correction techniques is performed.The experimental results show that the proposed correction method performs better than the traditional global one.展开更多
The project discusses the development of a deep learning model to detect osteoporosis from dental panoramic X-Ray images. It provides an in-depth understanding of human bone structure, osteoporosis, its symptoms, caus...The project discusses the development of a deep learning model to detect osteoporosis from dental panoramic X-Ray images. It provides an in-depth understanding of human bone structure, osteoporosis, its symptoms, causes, prevalence, and risk factors. The project also explains bone density measurement using dual-energy X-ray absorptiometry (DEXA) and the application of artificial intelligence (AI) and machine learning (ML) in medical imaging. The study uses panoramic dental X-rays to evaluate AI technology in dental imaging and classification of mandible inferior cortical based on Klemetti and Kolmakow criteria. The model architecture consists of convolutional, pooling, fully connected, ReLU, and Softmax layers. Dropout and early stopping are added to the model. The training process uses the train-test approach with 100 epochs and a batch size of 32, and performance evaluation measures such as accuracy, sensitivity, specificity, and F1-score are used to assess the classifier’s performance. The findings and methodology provide a comprehensive understanding of the application of deep learning in the detection of osteoporosis from dental panoramic X-Ray images, and the study demonstrates a robust approach to implementing AI in medical imaging for osteoporosis detection.展开更多
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi...The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.展开更多
文摘Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.
基金supported by the National Natural Science Foundation of China(NSFC)12333010the National Key R&D Program of China 2022YFF0503002+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0560000)the NSFC 11921003supported by the Prominent Postdoctoral Project of Jiangsu Province(2023ZB304)supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences,grant No.XDA15320000.
文摘Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image quality of the reconstruction is still difficult,which is particularly useful for scheme design of X-ray imaging systems,testing and improvement of imaging algorithms,and scientific research of X-ray sources.Currently,there is no specified method to quantitatively evaluate the quality of X-ray image reconstruction and the point-spread function(PSF)of an X-ray imager.In this paper,we propose percentage proximity degree(PPD)by considering the imaging characteristics of X-ray image reconstruction and in particular,sidelobes and their effects on imaging quality.After testing a variety of imaging quality assessments in six aspects,we utilized the technique for order preference by similarity to ideal solution to the indices that meet the requirements.Then we develop the final quality index for X-ray image reconstruction,QuIX,which consists of the selected indices and the new PPD.QuIX performs well in a series of tests,including assessment of instrument PSF and simulation tests under different grid configurations,as well as imaging tests with RHESSI data.It is also a useful tool for testing of imaging algorithms,and determination of imaging parameters for both RHESSI and ASO-S/Hard X-ray Imager,such as field of view,beam width factor,and detector selection.
基金supported by the National Key R&D Program of China 2022YFF0503002the National Natural Science Foundation of China(NSFC,Grant Nos.12333010 and 12233012)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0560000)supported by the Prominent Postdoctoral Project of Jiangsu Province(2023ZB304)supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences,grant No.XDA15320000.
文摘Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method,an indirect imaging technique that requires algorithms to reconstruct and optimize images.During the last decade,a variety of algorithms have been developed and improved.However,it is difficult to quantitatively evaluate the image quality of different solutions without a true,reference image of observation.How to choose the values of imaging parameters for these algorithms to get the best performance is also an open question.In this study,we present a detailed test of the characteristics of these algorithms,imaging dynamic range and a crucial parameter for the CLEAN method,clean beam width factor(CBWF).We first used SDO/AIA EUV images to compute DEM maps and calculate thermal X-ray maps.Then these realistic sources and several types of simulated sources are used as the ground truth in the imaging simulations for both RHESSI and ASO-S/HXI.The different solutions are evaluated quantitatively by a number of means.The overall results suggest that EM,PIXON,and CLEAN are exceptional methods for sidelobe elimination,producing images with clear source details.Although MEM_GE,MEM_NJIT,VIS_WV and VIS_CS possess fast imaging processes and generate good images,they too possess associated imperfections unique to each method.The two forward fit algorithms,VF and FF,perform differently,and VF appears to be more robust and useful.We also demonstrated the imaging capability of HXI and available HXI algorithms.Furthermore,the effect of CBWF on image quality was investigated,and the optimal settings for both RHESSI and HXI were proposed.
基金supported in part by the National Natural Science Foundation of China(Grant No.62062003)Natural Science Foundation of Ningxia(Grant No.2023AAC03293).
文摘The instance segmentation of impacted teeth in the oral panoramic X-ray images is hotly researched.However,due to the complex structure,low contrast,and complex background of teeth in panoramic X-ray images,the task of instance segmentation is technically tricky.In this study,the contrast between impacted Teeth and periodontal tissues such as gingiva,periodontalmembrane,and alveolar bone is low,resulting in fuzzy boundaries of impacted teeth.Amodel based on Teeth YOLACT is proposed to provide amore efficient and accurate solution for the segmentation of impacted teeth in oral panoramic X-ray films.Firstly,a Multi-scale Res-Transformer Module(MRTM)is designed.In the module,depthwise separable convolutions with different receptive fields are used to enhance the sensitivity of the model to lesion size.Additionally,the Vision Transformer is integrated to improve the model’s ability to perceive global features.Secondly,the Context Interaction-awareness Module(CIaM)is designed to fuse deep and shallow features.The deep semantic features guide the shallow spatial features.Then,the shallow spatial features are embedded into the deep semantic features,and the cross-weighted attention mechanism is used to aggregate the deep and shallow features efficiently,and richer context information is obtained.Thirdly,the Edge-preserving perceptionModule(E2PM)is designed to enhance the teeth edge features.The first-order differential operator is used to get the tooth edge weight,and the perception ability of tooth edge features is improved.The shallow spatial feature is fused by linear mapping,weight concatenation,and matrix multiplication operations to preserve the tooth edge information.Finally,comparison experiments and ablation experiments are conducted on the oral panoramic X-ray image datasets.The results show that the APdet,APseg,ARdet,ARseg,mAPdet,and mAPseg indicators of the proposed model are 89.9%,91.9%,77.4%,77.6%,72.8%,and 73.5%,respectively.This study further verifies the application potential of the method combining multi-scale feature extraction,multi-scale feature fusion,and edge perception enhancement in medical image segmentation,which provides a valuable reference for future related research.
基金supported by the National Natural Science Foundation of China(Grant Nos.42322408,42188101,41974211,and 42074202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201,and XDA15014800)supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202045)。
文摘Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.
基金support from the UK Space Agency under Grant Number ST/T002964/1partly supported by the International Space Science Institute(ISSI)in Bern,through ISSI International Team Project Number 523(“Imaging the Invisible:Unveiling the Global Structure of Earth’s Dynamic Magnetosphere”)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.
文摘Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.
基金the appreciation to the Deanship of Postgraduate Studies and ScientificResearch atMajmaah University for funding this research work through the Project Number R-2024-922.
文摘This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms.
文摘Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for detonation. For this, the study uses a set of 22,000 X-ray scanned images. After preprocessing with filtering techniques to improve image quality, deep learning methods, such as Convolutional Neural Networks (CNNs), are applied for classification. The results are also compared with Autoencoder and Random Forest algorithms. The results are validated on a second dataset, highlighting the advantages of the adopted approach. Baggage screening is a very important part of the risk assessment and security screening process at airports. Automating the detection of dangerous objects from passenger baggage X-ray scanners can speed up and increase the efficiency of the entire security procedure.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by NASA(Grant Nos.80NSSC19K0844,80NSSC20K1670,80MSFC20C0019,and 80GSFC21M0002)support from NASA Goddard Space Flight Center internal funding programs(HIF,Internal Scientist Funding Model,and Internal Research and Development)。
文摘The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.
基金the Researchers Supporting Project Number(RSP2023 R157),King Saud University,Riyadh,Saudi Arabia.
文摘An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and speed up the diagnosis of pneumonia,numerous approaches have been devised.To date,several methods have been employed to identify pneumonia.The Convolutional Neural Network(CNN)has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology.However,these methods are complex,inefficient,and imprecise to analyze a big number of datasets.In this paper,a new hybrid method for the automatic classification and identification of Pneumonia from chest X-ray images is proposed.The proposed method(ABOCNN)utilized theAfrican BuffaloOptimization(ABO)algorithmto enhanceCNNperformance and accuracy.The Weinmed filter is employed for pre-processing to eliminate unwanted noises from chest X-ray images,followed by feature extraction using the Grey Level Co-Occurrence Matrix(GLCM)approach.Relevant features are then selected from the dataset using the ABO algorithm,and ultimately,high-performance deep learning using the CNN approach is introduced for the classification and identification of Pneumonia.Experimental results on various datasets showed that,when contrasted to other approaches,the ABO-CNN outperforms them all for the classification tasks.The proposed method exhibits superior values like 96.95%,88%,86%,and 86%for accuracy,precision,recall,and F1-score,respectively.
基金granted by the Korea Research Institute of Chemical Technology(KRICT)of the Republic of Korea(No.2422-10)the National Research Foundation(NRF)(NRF-2021R1C1C2007445 and RS-2023-00280495)of Republic of Korea.
文摘The development of portable X-ray detectors is necessary for diagnosing fractures in unconscious patients in emergency situations.However,this is quite challenging because of the heavy weight of the scintillator and silicon photodetectors.The weight and thickness of X-ray detectors can be reduced by replacing the silicon layer with an organic photodetectors.This study presents a novel bithienopyrroledione-based polymer donor that exhibits excellent photodetection properties even in a thick photoactive layer(~700 nm),owing to the symmetric backbone and highly soluble molecular structure of bithienopyrroledione.The ability of bithienopyrroledione-based polymer donor to strongly suppress the dark current density(Jd~10−10 A cm^(−2))at a negative bias(−2.0 V)while maintaining high responsivity(R=0.29 A W−1)even at a thickness of 700 nm results in a maximum shot-noise-limited specific detectivity of D_(sh)^(*)=2.18×10^(13)Jones in the organic photodetectors.Printed organic photodetectors are developed by slot-die coating for use in X-ray detectors,which exhibit D_(sh)^(*)=2.73×10^(12)Jones with clear rising(0.26 s)and falling(0.29 s)response times upon X-ray irradiation.Detection reliability is also proven by linear response of the X-ray detector,and the X-ray detection limit is 3 mA.
文摘Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the joint.It is often challenging for doctors to identify the exact model and manufacturer of the prosthesis when it is unknown.This paper proposes a transfer learning-based class imbalance-aware prosthesis detection method to detect the implant’s manufacturer automatically from shoulder X-ray images.The framework of the method proposes a novel training approach and a new set of batch-normalization,dropout,and fully convolutional layers in the head network.It employs cyclical learning rates and weighting-based loss calculation mechanism.These modifications aid in faster convergence,avoid local-minima stagnation,and remove the training bias caused by imbalanced dataset.The proposed method is evaluated using seven well-known pre-trained models of VGGNet,ResNet,and DenseNet families.Experimentation is performed on a shoulder implant benchmark dataset consisting of 597 shoulder X-ray images.The proposed method improves the classification performance of all pre-trained models by 10–12%.The DenseNet-201-based variant has achieved the highest classification accuracy of 89.5%,which is 10%higher than existing methods.Further,to validate and generalize the proposed method,the existing baseline dataset is supplemented to six classes,including samples of two more implant manufacturers.Experimental results have shown average accuracy of 86.7%for the extended dataset and show the preeminence of the proposed method.
基金funded by the Project KC-4.0.14/19-25“Research on Building a Support System for Diagnosis and Prediction Geo-Spatial Epidemiology of Pulmonary Tuberculosis by Chest X-Ray Images in Vietnam”.
文摘Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The late detection of tuberculosis could lead to danger to patient health,even death.Vietnamis one of the countries heavily affected by the COVID-19 pandemic,andmany residential areas as well as hospitals have to be isolated for a long time.Reality demands a fast and effective tuberculosis diagnosis solution to deal with the difficulty of accessingmedical services,such as an automatic tuberculosis diagnosis system.In our study,aiming to build that system,we were interested in the tuberculosis diagnosis problem from the chest X-ray images of Vietnamese patients.The chest X-ray image is an important data type to diagnose tuberculosis,and it has also received a lot of attention from deep learning researchers.This paper proposed a novel method for tuberculosis diagnosis and visualization using the deeplearning approach with a large Vietnamese X-ray image dataset.In detail,we designed our custom convolutional neural network for the X-ray image classification task and then analyzed the predicted result to provide visualization as a heat-map.To prove the performance of our network model,we conducted several experiments to compare it to another study and also to evaluate it with the dataset of this research.To support the implementation,we built a specific annotation system for tuberculosis under the requirements of radiologists in the Vietnam National Lung Hospital.A large experiment dataset was also from this hospital,and most of this data was for training the convolutional neural network model.The experiment results were evaluated regarding sensitivity,specificity,and accuracy.We achieved high scores with a training accuracy score of 0.99,and the testing specificity and sensitivity scores were over 0.9.Based on the X-ray image classification result,we visualize prediction results as heat-maps and also analyze them in comparison with annotated symptoms of radiologists.
文摘Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented.
文摘The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model.
基金National Natural Science Foundation of China(No.61305118)
文摘X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image will happen,which restrict the application of X-ray image,especially in high accuracy fields.Distortion correction can be performed using algorithms that can be classified as global or local according to the method used,both having specific advantages and disadvantages.In this paper,a new global method based on support vector regression(SVR)machine for distortion correction is proposed.In order to test the presented method,a calibration phantom is specially designed for this purpose.A comparison of the proposed method with the traditional global distortion correction techniques is performed.The experimental results show that the proposed correction method performs better than the traditional global one.
文摘The project discusses the development of a deep learning model to detect osteoporosis from dental panoramic X-Ray images. It provides an in-depth understanding of human bone structure, osteoporosis, its symptoms, causes, prevalence, and risk factors. The project also explains bone density measurement using dual-energy X-ray absorptiometry (DEXA) and the application of artificial intelligence (AI) and machine learning (ML) in medical imaging. The study uses panoramic dental X-rays to evaluate AI technology in dental imaging and classification of mandible inferior cortical based on Klemetti and Kolmakow criteria. The model architecture consists of convolutional, pooling, fully connected, ReLU, and Softmax layers. Dropout and early stopping are added to the model. The training process uses the train-test approach with 100 epochs and a batch size of 32, and performance evaluation measures such as accuracy, sensitivity, specificity, and F1-score are used to assess the classifier’s performance. The findings and methodology provide a comprehensive understanding of the application of deep learning in the detection of osteoporosis from dental panoramic X-Ray images, and the study demonstrates a robust approach to implementing AI in medical imaging for osteoporosis detection.
文摘The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.