Awell-anticipated wide-field X-ray focusing imager,the Einstein Probe(EP,also named“Tianguan”in Chinese)has caught the eye of astronomers since its launch in January 2024.Initiated and sponsored by the Chinese Acade...Awell-anticipated wide-field X-ray focusing imager,the Einstein Probe(EP,also named“Tianguan”in Chinese)has caught the eye of astronomers since its launch in January 2024.Initiated and sponsored by the Chinese Academy of Sciences(CAS),and developed in cooperation with the European Space Agency(ESA).展开更多
The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill ...The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill in foam hohlraums with a wall density of 0.8 g/cm^(3) than in solid gold hohlraums.The radiation temperatures at different angles confirm these results.Simulation results show that the expanding plasma density in the foam hohlraums is lower than in the solid hohlraums,resulting in less expanding plasma emission and higher radiation temperature.Thus,foam gold hohlraums have advantages in reducing wall plasma filling and improving X-ray transmission,which has potential applications in achieving a higher fusion yield.展开更多
X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast scien...X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.展开更多
The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristi...The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristics of bound and continuum states in dense matter are modeled by a valence-band-like structure in a generalized ion-sphere approach with states that are either bound,free,or mixed.The self-consistent combination of this model with the Dirac wave equations of multielectron bound states allows one to fully respect the Pauli principle and to take into account the exact nonlocal exchange terms.The generalized method allows very high precision without implication of calibration shifts and scaling parameters and therefore has predictive power.This leads to new insights in the analysis of various data.The simple ionization model representing the K-edge is generalized to excitation–ionization phenomena resulting in an advanced interpretation of ionization depression data in near-solid-density plasmas.The model predicts scaling relations along the isoelectronic sequences and the existence of bound M-states that are in excellent agreement with experimental data,whereas other methods have failed.The application to unexplained data from compound materials also gives good agreement without the need to invoke any additional assumptions in the generalized model,whereas other methods have lacked consistency.展开更多
The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and...The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.展开更多
Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LU...Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LUS) in resource-rich ICUs is still under investigation. The present study compares the utility of LUS to that of CXR in identifying pulmonary edema and pleural effusion in ICU patients. In addition, consolidation and pneumothorax were analyzed as secondary outcome measures. Material and Methods This is a prospective, single centric, observational study. Patients admitted in ICU were examined for lung pathologies, using LUS by a trained intensivist;and CXR done within 4 hours of each other. The final diagnosis was ascertained by an independent senior radiologist, based on the complete medical chart including clinical findings and the results of thoracic CT, if available. The results were compared and analyzed. Results Sensitivity, specificity and diagnostic accuracy of LUS was 95%, 94.4%, 94.67% for pleural effusion;and 98.33%, 97.78%, 98.00% for pulmonary edema respectively. Corresponding values with CXR were 48.33%, 76.67%, 65.33% for pleural effusion;and 36.67%, 82.22% and 64.00% for pulmonary edema respectively. Sensitivity, specificity and diagnostic accuracy of LUS was 91.30%, 96.85%, 96.00% for consolidation;and 100.00%, 79.02%, 80.00% for pneumothorax respectively. Corresponding values with CXR were 60.87%, 81.10%, 78.00% for consolidation;and 71.3%, 97.20%, 96.00% for pneumothorax respectively. Conclusion LUS has better diagnostic accuracy in diagnosis of pleural effusion and pulmonary edema when compared with CXR and is thus recommended as an effective alternative for diagnosis of these conditions in acute care settings. Our study recommends that a thoracic CT scan can be avoided in most of such cases.展开更多
An intergeneric artificial hybridization was conducted between Cunninghamia R. Br. and Cryptomeria D.Don The results are as follows:1. A considerable number of hybrid seeds shed from 76 pollinated cones were ...An intergeneric artificial hybridization was conducted between Cunninghamia R. Br. and Cryptomeria D.Don The results are as follows:1. A considerable number of hybrid seeds shed from 76 pollinated cones were empty and a total of 628 looks plump. Soft X ray radiographs showed that, still and all, a majority of the “plump" seeds were embryoless (597, 95.6%) whereas some were partially developed (17,2.7%) and only a few were really full (14, 2.2%). 2. Germination test showed that all of the radiographed hybrid seeds with fully developed embryos were germinable whereas those with partially developed embryos were ungerminable. 3. Physiologically, the growth rate of hypocotyl, the date for shedding of seed coat and spreading of cotyledons, the elongation of epicotyl, and the branching of shoot of the 11 month old seedlings showed a tendency to fall behind those of the female parent; morphologically, the 11 month old hybrid seedlings with linear leaves appeared rather short, slender and weak, whereas the seedlings of the female parents with linear_lanceolate leaves appeared rather tall, stout and strong. 4. It is considered that the hybrid may be true and the crossability reveals a close phylogenetic affinity of Cunninghamia with Cryptomeria.展开更多
Interfacial bonding in as deposited and annealed Co/C soft X ray multilayer structures is investigated by X ray photo electron spectroscopy (XPS).It is found that there is interdiffusion between cobalt and carbon ...Interfacial bonding in as deposited and annealed Co/C soft X ray multilayer structures is investigated by X ray photo electron spectroscopy (XPS).It is found that there is interdiffusion between cobalt and carbon in the as deposited Co/C multilayers,and this is confirmed by structure characterization using low angle X ray diffraction (LAXD).The calculation of the chemical shifts in Co C system based on Miedemas macroscopic atom model suggests that it is impossible to detect the chemical shift experimentally in the Co C compound,which is consistent with the XPS results.The presence of metallic carbide bonding is evidenced through the nature of the carbon bonding in survey taken at Co C and C Co interfaces of annealed samples.Our results also indicate that XPS is a direct method to probe the chemical bonding at the interfaces.展开更多
A new method of calculating finely the soft X ray spectra of hydrogenlike highly ionized states is presented. It is based on the relation of the ionicity and the ionization energies of hydrogenlike atoms and the new...A new method of calculating finely the soft X ray spectra of hydrogenlike highly ionized states is presented. It is based on the relation of the ionicity and the ionization energies of hydrogenlike atoms and the new model of potential function of hydrogenlike atoms. The relativistic revision and the spin orbit couping of excitation energy levels are taken into account. The calculated results are in good agreement with the experiments.展开更多
Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities o...Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities of supersaturated solid solution (SSS) of Zn-Al alloy and α' phase formed by quenching would reduce with the increase of Zn content and the precipitation of η-Zn phases even when aging at ambient temperature, so that the exothermic precipitation peak in DSC curve would disappear. The activation energy of the η-Zn precipitation and the reaction enthalpy were calculated and measured. The kinetics of α' decomposition or η-Zn formation was determined by XRD. The microstructure change during aging was observed by TEM.展开更多
The research on the application of X-ray diffraction in the quantitative analysis of Chinese medicines is rare. The main reason is that the technical problems related to the internal standard and the selection of quan...The research on the application of X-ray diffraction in the quantitative analysis of Chinese medicines is rare. The main reason is that the technical problems related to the internal standard and the selection of quantitative peaks are not well solved, and the accuracy and precision of the results are not satisfactory. This study employed the concept of mass absorption coefficient based on the internal standard method, and the full spectrum fitting and quantitative methods were used to solve the above technical problems. The sample was blended. the internal standard substance of zinc oxide was fully ground, and tablets were prepared by positive pressure method. Under certain instrumental conditions, the PXRD pattern was obtained by scanning. The percentage of gypsum fibrosum in Xiaokening tablet was obtained by quantitative analysis of full spectrum fitting internal standard by TOPAS software. The method was investigated by methodology. At the same time, the method was compared by ion chromatography, and SPSS software was used to make a significant t test on the results of the two methods. After the investigation, the average standard recovery rate of CaSO4-2H2O was 99.06%(RSD = 3.02%);and the recovery rate for simulated samples was 96.7%. The method had good specificity. After statistical analysis, there was no significant difference between the new PXRD method and the traditional method of ion chromatography.展开更多
NdCl 3 FeCl 3 graphite intercalation compounds were synthesized by molten salt exchange method. The state of the intercalates and the relative contents of Nd, Fe, Cl, C in the product were determined by X ray ph...NdCl 3 FeCl 3 graphite intercalation compounds were synthesized by molten salt exchange method. The state of the intercalates and the relative contents of Nd, Fe, Cl, C in the product were determined by X ray photoelectron spectroscopy(XPS). From the XPS data, it is concluded that the binding energy of Fe2p electrons is about 711 20~710 3 eV, the binding energy of Nd3d electrons is about 983 08~983 20 eV, and Fe in the product has two valence states (Fe 3+ and Fe 2+ ).展开更多
X-ray powder diffraction data and crystal structure of NiSbY compound were studied by X-ray powderdiffraction. The compound belongs to the space group F43 m with MgAgAs structure type, and the parameters Z=4, a=0.6307...X-ray powder diffraction data and crystal structure of NiSbY compound were studied by X-ray powderdiffraction. The compound belongs to the space group F43 m with MgAgAs structure type, and the parameters Z=4, a=0.63075(2) nm.展开更多
Grazing incidence optics (GIO) is the most important compound in an x-ray detection system; it is used to concentrate the x-ray photons from outer space. A nested planar GIO for x-ray concentration is designed and d...Grazing incidence optics (GIO) is the most important compound in an x-ray detection system; it is used to concentrate the x-ray photons from outer space. A nested planar GIO for x-ray concentration is designed and developed by authors in this paper; planar segments are used as the reflection mirror instead of curved segments because of the simple process and low cost. After the complex assembling process with a special metal supporter, a final circle light spot of φ 12 mm was obtained in the visible light testing experiment of GIO; the effective area of 1710.51 mm^2@ 1 keV and 530 mm^2@8 keV is obtained in the x-ray testing experiment with the GIO-SDD combination, which is supposed to be a concentrating detector in xray detection systems.展开更多
The compound CeNi 5Sn was studied by means of X ray powder diffraction technique and refined by Rietveld method. It has a hexagonal structure with space group P 6 3/ mmc (No.194), Z =4, the lattice constant...The compound CeNi 5Sn was studied by means of X ray powder diffraction technique and refined by Rietveld method. It has a hexagonal structure with space group P 6 3/ mmc (No.194), Z =4, the lattice constants a =0 48912(3) nm, c =1 973(2) nm and D x=8 974 g·cm -3 . The Rietveld structural refinement was performed, leading to R p=0 138 and R wp =0 185. The figure of merit F N for the XRD data is F 30 =82 1(0 0068, 54). The X ray powder diffraction data are presented.展开更多
The compound PrNiSn was studied by X ray powder diffraction technique. The crystal structure and the X ray diffraction data for this compound at room temperature were reported. The compound PrNiSn is orthorhombic wi...The compound PrNiSn was studied by X ray powder diffraction technique. The crystal structure and the X ray diffraction data for this compound at room temperature were reported. The compound PrNiSn is orthorhombic with lattice parameters a =0.74569(3) nm, b =0.76851(5) nm, c =0.45676(8) nm, V =0.26176 nm 3, Z =4 and D x=8.076 g·cm -3 , space group Pna2 1(33). The figure of merit F N for the compound is F 30 =54 (0.0093, 60).展开更多
A new type of solid-conversion gas detector is investigated for high energy X-ray industrial computed tomography (HECT). The conversion efficiency is calculated by using the EGSnrc Monte Carlo code on the Linux platfo...A new type of solid-conversion gas detector is investigated for high energy X-ray industrial computed tomography (HECT). The conversion efficiency is calculated by using the EGSnrc Monte Carlo code on the Linux platform to simulate the transport process of photons and electrons in the detector. The simulation results show that the conversion efficiency could be more than 65%, if the X-ray beam width is less than about 0.2 mm, and a tungsten slab with 0.2 mm thickness and 30 mm length is employed as a radiation conversion medium. Meanwhile the results indicate that this new detector has higher conversion efficiency as well as less volume. Theoretically this new kind of detector could take place of the traditional scintillation detector for HECT.展开更多
文摘Awell-anticipated wide-field X-ray focusing imager,the Einstein Probe(EP,also named“Tianguan”in Chinese)has caught the eye of astronomers since its launch in January 2024.Initiated and sponsored by the Chinese Academy of Sciences(CAS),and developed in cooperation with the European Space Agency(ESA).
基金support from the National Natural Science Foundation of China(Grant Nos.11775204 and 12105269)the Presidential Foundation of the China Academy of Engineering Physics(Grant No.YZJJLX2018011)。
文摘The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill in foam hohlraums with a wall density of 0.8 g/cm^(3) than in solid gold hohlraums.The radiation temperatures at different angles confirm these results.Simulation results show that the expanding plasma density in the foam hohlraums is lower than in the solid hohlraums,resulting in less expanding plasma emission and higher radiation temperature.Thus,foam gold hohlraums have advantages in reducing wall plasma filling and improving X-ray transmission,which has potential applications in achieving a higher fusion yield.
基金supported by the National Grand Instrument Project No. SQ2019YFF01014400the Natural Science Foundation of China (Grant Nos. 12375147, 12435011, 12075030)+2 种基金the Beijing Outstanding Young Scientist Project, Project for Young Scientists in Basic Research of Chinese Academy of Sciences (YSBR-115)the Beijing Normal University Scientific Research Initiation Fund for Introducing Talents No. 310432104the Fundamental Research Funds for the Central Universities, Peking University
文摘X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.
基金supported by the NSFC under Grant Nos.11374315 and 12074395the Invited Scientist Program of CNRS at Ecole Polytechnique,Palaiseau,France。
文摘The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristics of bound and continuum states in dense matter are modeled by a valence-band-like structure in a generalized ion-sphere approach with states that are either bound,free,or mixed.The self-consistent combination of this model with the Dirac wave equations of multielectron bound states allows one to fully respect the Pauli principle and to take into account the exact nonlocal exchange terms.The generalized method allows very high precision without implication of calibration shifts and scaling parameters and therefore has predictive power.This leads to new insights in the analysis of various data.The simple ionization model representing the K-edge is generalized to excitation–ionization phenomena resulting in an advanced interpretation of ionization depression data in near-solid-density plasmas.The model predicts scaling relations along the isoelectronic sequences and the existence of bound M-states that are in excellent agreement with experimental data,whereas other methods have failed.The application to unexplained data from compound materials also gives good agreement without the need to invoke any additional assumptions in the generalized model,whereas other methods have lacked consistency.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-096)the National Major Scientific Instruments and Equipment Development Project of China(No.11627901)+1 种基金the National Key Research and Development Program of China(Nos.2021YFF0701202,2021YFA1600703)the National Natural Science Foundation of China(Nos.U1932205,12275343).
文摘The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.
文摘Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LUS) in resource-rich ICUs is still under investigation. The present study compares the utility of LUS to that of CXR in identifying pulmonary edema and pleural effusion in ICU patients. In addition, consolidation and pneumothorax were analyzed as secondary outcome measures. Material and Methods This is a prospective, single centric, observational study. Patients admitted in ICU were examined for lung pathologies, using LUS by a trained intensivist;and CXR done within 4 hours of each other. The final diagnosis was ascertained by an independent senior radiologist, based on the complete medical chart including clinical findings and the results of thoracic CT, if available. The results were compared and analyzed. Results Sensitivity, specificity and diagnostic accuracy of LUS was 95%, 94.4%, 94.67% for pleural effusion;and 98.33%, 97.78%, 98.00% for pulmonary edema respectively. Corresponding values with CXR were 48.33%, 76.67%, 65.33% for pleural effusion;and 36.67%, 82.22% and 64.00% for pulmonary edema respectively. Sensitivity, specificity and diagnostic accuracy of LUS was 91.30%, 96.85%, 96.00% for consolidation;and 100.00%, 79.02%, 80.00% for pneumothorax respectively. Corresponding values with CXR were 60.87%, 81.10%, 78.00% for consolidation;and 71.3%, 97.20%, 96.00% for pneumothorax respectively. Conclusion LUS has better diagnostic accuracy in diagnosis of pleural effusion and pulmonary edema when compared with CXR and is thus recommended as an effective alternative for diagnosis of these conditions in acute care settings. Our study recommends that a thoracic CT scan can be avoided in most of such cases.
文摘An intergeneric artificial hybridization was conducted between Cunninghamia R. Br. and Cryptomeria D.Don The results are as follows:1. A considerable number of hybrid seeds shed from 76 pollinated cones were empty and a total of 628 looks plump. Soft X ray radiographs showed that, still and all, a majority of the “plump" seeds were embryoless (597, 95.6%) whereas some were partially developed (17,2.7%) and only a few were really full (14, 2.2%). 2. Germination test showed that all of the radiographed hybrid seeds with fully developed embryos were germinable whereas those with partially developed embryos were ungerminable. 3. Physiologically, the growth rate of hypocotyl, the date for shedding of seed coat and spreading of cotyledons, the elongation of epicotyl, and the branching of shoot of the 11 month old seedlings showed a tendency to fall behind those of the female parent; morphologically, the 11 month old hybrid seedlings with linear leaves appeared rather short, slender and weak, whereas the seedlings of the female parents with linear_lanceolate leaves appeared rather tall, stout and strong. 4. It is considered that the hybrid may be true and the crossability reveals a close phylogenetic affinity of Cunninghamia with Cryptomeria.
文摘Interfacial bonding in as deposited and annealed Co/C soft X ray multilayer structures is investigated by X ray photo electron spectroscopy (XPS).It is found that there is interdiffusion between cobalt and carbon in the as deposited Co/C multilayers,and this is confirmed by structure characterization using low angle X ray diffraction (LAXD).The calculation of the chemical shifts in Co C system based on Miedemas macroscopic atom model suggests that it is impossible to detect the chemical shift experimentally in the Co C compound,which is consistent with the XPS results.The presence of metallic carbide bonding is evidenced through the nature of the carbon bonding in survey taken at Co C and C Co interfaces of annealed samples.Our results also indicate that XPS is a direct method to probe the chemical bonding at the interfaces.
文摘A new method of calculating finely the soft X ray spectra of hydrogenlike highly ionized states is presented. It is based on the relation of the ionicity and the ionization energies of hydrogenlike atoms and the new model of potential function of hydrogenlike atoms. The relativistic revision and the spin orbit couping of excitation energy levels are taken into account. The calculated results are in good agreement with the experiments.
文摘Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities of supersaturated solid solution (SSS) of Zn-Al alloy and α' phase formed by quenching would reduce with the increase of Zn content and the precipitation of η-Zn phases even when aging at ambient temperature, so that the exothermic precipitation peak in DSC curve would disappear. The activation energy of the η-Zn precipitation and the reaction enthalpy were calculated and measured. The kinetics of α' decomposition or η-Zn formation was determined by XRD. The microstructure change during aging was observed by TEM.
文摘The research on the application of X-ray diffraction in the quantitative analysis of Chinese medicines is rare. The main reason is that the technical problems related to the internal standard and the selection of quantitative peaks are not well solved, and the accuracy and precision of the results are not satisfactory. This study employed the concept of mass absorption coefficient based on the internal standard method, and the full spectrum fitting and quantitative methods were used to solve the above technical problems. The sample was blended. the internal standard substance of zinc oxide was fully ground, and tablets were prepared by positive pressure method. Under certain instrumental conditions, the PXRD pattern was obtained by scanning. The percentage of gypsum fibrosum in Xiaokening tablet was obtained by quantitative analysis of full spectrum fitting internal standard by TOPAS software. The method was investigated by methodology. At the same time, the method was compared by ion chromatography, and SPSS software was used to make a significant t test on the results of the two methods. After the investigation, the average standard recovery rate of CaSO4-2H2O was 99.06%(RSD = 3.02%);and the recovery rate for simulated samples was 96.7%. The method had good specificity. After statistical analysis, there was no significant difference between the new PXRD method and the traditional method of ion chromatography.
文摘NdCl 3 FeCl 3 graphite intercalation compounds were synthesized by molten salt exchange method. The state of the intercalates and the relative contents of Nd, Fe, Cl, C in the product were determined by X ray photoelectron spectroscopy(XPS). From the XPS data, it is concluded that the binding energy of Fe2p electrons is about 711 20~710 3 eV, the binding energy of Nd3d electrons is about 983 08~983 20 eV, and Fe in the product has two valence states (Fe 3+ and Fe 2+ ).
文摘X-ray powder diffraction data and crystal structure of NiSbY compound were studied by X-ray powderdiffraction. The compound belongs to the space group F43 m with MgAgAs structure type, and the parameters Z=4, a=0.63075(2) nm.
基金supported by the National Natural Science Foundation of China(Grant No.61471357)the State Key Laboratory of Geo-Information Engineering Foundation(Grant No.SKLGIE2014-M-2-1)
文摘Grazing incidence optics (GIO) is the most important compound in an x-ray detection system; it is used to concentrate the x-ray photons from outer space. A nested planar GIO for x-ray concentration is designed and developed by authors in this paper; planar segments are used as the reflection mirror instead of curved segments because of the simple process and low cost. After the complex assembling process with a special metal supporter, a final circle light spot of φ 12 mm was obtained in the visible light testing experiment of GIO; the effective area of 1710.51 mm^2@ 1 keV and 530 mm^2@8 keV is obtained in the x-ray testing experiment with the GIO-SDD combination, which is supposed to be a concentrating detector in xray detection systems.
文摘The compound CeNi 5Sn was studied by means of X ray powder diffraction technique and refined by Rietveld method. It has a hexagonal structure with space group P 6 3/ mmc (No.194), Z =4, the lattice constants a =0 48912(3) nm, c =1 973(2) nm and D x=8 974 g·cm -3 . The Rietveld structural refinement was performed, leading to R p=0 138 and R wp =0 185. The figure of merit F N for the XRD data is F 30 =82 1(0 0068, 54). The X ray powder diffraction data are presented.
文摘The compound PrNiSn was studied by X ray powder diffraction technique. The crystal structure and the X ray diffraction data for this compound at room temperature were reported. The compound PrNiSn is orthorhombic with lattice parameters a =0.74569(3) nm, b =0.76851(5) nm, c =0.45676(8) nm, V =0.26176 nm 3, Z =4 and D x=8.076 g·cm -3 , space group Pna2 1(33). The figure of merit F N for the compound is F 30 =54 (0.0093, 60).
基金supported by the National Natural Science Foundation of China (No.60672098)the Tackling Key Problems of Science and Technology of ChongQing (No.CSTC2009AC3047)
文摘A new type of solid-conversion gas detector is investigated for high energy X-ray industrial computed tomography (HECT). The conversion efficiency is calculated by using the EGSnrc Monte Carlo code on the Linux platform to simulate the transport process of photons and electrons in the detector. The simulation results show that the conversion efficiency could be more than 65%, if the X-ray beam width is less than about 0.2 mm, and a tungsten slab with 0.2 mm thickness and 30 mm length is employed as a radiation conversion medium. Meanwhile the results indicate that this new detector has higher conversion efficiency as well as less volume. Theoretically this new kind of detector could take place of the traditional scintillation detector for HECT.