期刊文献+
共找到283,001篇文章
< 1 2 250 >
每页显示 20 50 100
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
1
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
2
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
3
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
4
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
5
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
Wu-Manber算法性能分析及其改进 被引量:13
6
作者 陈瑜 陈国龙 《计算机科学》 CSCD 北大核心 2006年第6期203-205,209,共4页
在模式匹配中,多模式匹配算法越来越受到人们的关注。本文首先介绍了一些著名的多模式匹配算法,重点介绍了Wu-Manber算法的基本概念及其实现原理,此算法在实践应用中是最有效的。然后提出了对Wu-Manber算法的改进,以解决多模式串长度很... 在模式匹配中,多模式匹配算法越来越受到人们的关注。本文首先介绍了一些著名的多模式匹配算法,重点介绍了Wu-Manber算法的基本概念及其实现原理,此算法在实践应用中是最有效的。然后提出了对Wu-Manber算法的改进,以解决多模式串长度很短时出现的性能问题。最后,实验数据表明,改进后的Wu-Manber算法,其性能远远优于传统的Wu-Manber算法。 展开更多
关键词 wu-manber算法 多模式匹配 性能分析
在线阅读 下载PDF
一种改进的Wu-Manber多模式串匹配算法 被引量:5
7
作者 马伟华 刘玉梅 +1 位作者 叶飞 杨旭东 《应用科技》 CAS 2007年第10期32-34,38,共4页
在分析Wu—Manber算法的基础上,结合QS算法思想,设计了一种改进的多模式串匹配算法:QWM(quick Wu—Manber).算法充分利用紧邻当前窗口之后的B字符块,使算法的最大移动距离由原来的(m—B+1)增大至(m+B),平均移动距离也得... 在分析Wu—Manber算法的基础上,结合QS算法思想,设计了一种改进的多模式串匹配算法:QWM(quick Wu—Manber).算法充分利用紧邻当前窗口之后的B字符块,使算法的最大移动距离由原来的(m—B+1)增大至(m+B),平均移动距离也得到很大提高.同时对QWM算法和Wu-Manber算法进行了实验对比,无论模式串数量和最小长度怎么变化,性能都有较大提升.实验表明,改进的算法在对英文文本进行扫描时有4%~13%的提高. 展开更多
关键词 多模式串匹配 字符串匹配 Wu—Manber算法
在线阅读 下载PDF
基于Wu-Manber的快速跳跃多模式匹配算法
8
作者 王艳秋 兰巨龙 《四川大学学报(工程科学版)》 CSCD 北大核心 2007年第S1期-,共6页
海量信息处理以及网络入侵检测等应用都对串匹配技术提出了新的挑战。在分析多模式匹配的Wu-Man- ber算法之后,提出一种基于WM的快速跳跃多模式匹配算法。该算法采用增大跳跃距离、减少冗余移动的方法,提高了WM算法的查找效率。试验数... 海量信息处理以及网络入侵检测等应用都对串匹配技术提出了新的挑战。在分析多模式匹配的Wu-Man- ber算法之后,提出一种基于WM的快速跳跃多模式匹配算法。该算法采用增大跳跃距离、减少冗余移动的方法,提高了WM算法的查找效率。试验数据表明该算法的查找时间比WM算法减少了5-9%。 展开更多
关键词 多模式串匹配 wu-manber算法 快速跳跃
在线阅读 下载PDF
Wu-Manber算法的改进研究
9
作者 王佳星 陈华辉 《移动通信》 2017年第10期63-69,共7页
Wu-Manber算法是一种经典的多模式字符串匹配算法,常用于解决网络入侵检测等问题。为了解决Wu-Manber算法在模式集规模增长时,prefix表中会出现过长的模式链表这一问题,通过改变原有prefix表中的链表结构以及存储信息的格式,提出两种改... Wu-Manber算法是一种经典的多模式字符串匹配算法,常用于解决网络入侵检测等问题。为了解决Wu-Manber算法在模式集规模增长时,prefix表中会出现过长的模式链表这一问题,通过改变原有prefix表中的链表结构以及存储信息的格式,提出两种改进算法,分别用于处理较小的模式集合和较大的模式集合。实验证实了改进算法可以提高字符串匹配速度,具有很高的实用价值。 展开更多
关键词 多模式匹配 wu-manber算法 哈希表 二叉树
在线阅读 下载PDF
一种改进的针对中文编码的Wu-Manber多模式匹配算法 被引量:4
10
作者 王一霈 石春 +1 位作者 戴上静 吴刚 《小型微型计算机系统》 CSCD 北大核心 2015年第4期778-781,共4页
Wu-Manber算法是多模式匹配领域性能优越的算法之一.针对Wu-Manber算法不能很好的用于中文环境,以及滑动距离受限和冗余匹配的问题,提出一种改进的针对中文编码的WM_CH多模式匹配算法.WM_CH针对中文编码修改了哈希函数,优化了建立哈希... Wu-Manber算法是多模式匹配领域性能优越的算法之一.针对Wu-Manber算法不能很好的用于中文环境,以及滑动距离受限和冗余匹配的问题,提出一种改进的针对中文编码的WM_CH多模式匹配算法.WM_CH针对中文编码修改了哈希函数,优化了建立哈希表的过程;修改并优化了算法匹配过程,在执行精确匹配时消除了冗余匹配,增大了单次精确匹配后的滑动距离.实际测试表明,该算法性能优异,保持与原算法匹配精确度一致,针对中文编码能快速过滤非中文字符.在特征串集规模大于50 000时,匹配速度比原算法提升40%以上,同时滑动窗口的跳转次数显著下降. 展开更多
关键词 多模式匹配算法 特征串 Wu—Manber算法 WM_CH算法
在线阅读 下载PDF
一种改进的Wu-Manber多关键字匹配算法 被引量:4
11
作者 莫德敏 刘耀军 《中文信息学报》 CSCD 北大核心 2009年第1期30-34,共5页
针对Wu-Manber算法在处理公共子后缀模式情况下的不足,该文提出了一种基于非空公共子后缀模式的处理算法。该算法把有非空公共子后缀的模式汇集在一起,进一步减小了next链表的平均长度。在匹配过程中减少了字符比较的次数,从而提高算法... 针对Wu-Manber算法在处理公共子后缀模式情况下的不足,该文提出了一种基于非空公共子后缀模式的处理算法。该算法把有非空公共子后缀的模式汇集在一起,进一步减小了next链表的平均长度。在匹配过程中减少了字符比较的次数,从而提高算法的运行效率。该文对搜狗实验室给出的相关文档进行全文检索实验,并和原Wu-Manber算法、孙晓山等提出的改进算法进行比较。实验结果表明,该文提出的改进算法有效地减少了匹配过程中字符比较的次数,从而提高匹配的速度和效率。 展开更多
关键词 计算机应用 中文信息处理 Wu—Manber算法 多关键字匹配 模式匹配 字符串匹配
在线阅读 下载PDF
Wu-Manber算法在大规模模式串下的改进 被引量:2
12
作者 莫德敏 刘耀军 《晋中学院学报》 2008年第3期86-90,共5页
对笔者在另一篇文章《一种改进的Wu-Manber多关键字匹配算法》中提出的算法进行了改进,把原算法中next链表中结点的Same-Subsuffix域中分裂成两个子域,使得搜索过程中字符比较的次数进一步减少,从而提高算法的效率.特别是在大规模模式... 对笔者在另一篇文章《一种改进的Wu-Manber多关键字匹配算法》中提出的算法进行了改进,把原算法中next链表中结点的Same-Subsuffix域中分裂成两个子域,使得搜索过程中字符比较的次数进一步减少,从而提高算法的效率.特别是在大规模模式串的情况下新算法的效率比原算法有进一步的提高.实验结果表明,当模式串较少时,新算法效率与原算法相比有一定的损失.而随着模式串的增加,新算法具有更高的效率.因此,新的算法比原算法具有更大的适用范围. 展开更多
关键词 Wu—Manber算法 多关键字匹配 模式匹配 字符串匹配 信息检索
在线阅读 下载PDF
基于Wu-Manber算法的大规模URL模式串匹配算法 被引量:2
13
作者 贾博威 吴志刚 张树壮 《智能计算机与应用》 2017年第5期4-9,共6页
大规模高速URL匹配是许多网络安全系统中的关键技术,经典串匹配算法在大规模URL情况下有许多限制。针对URL数据的特点在经典多模式串匹配算法Wu-Manber基础上提出XWM-Tree算法和XWM-Hash算法。算法应用了模式串窗口选择,两阶段哈希和关... 大规模高速URL匹配是许多网络安全系统中的关键技术,经典串匹配算法在大规模URL情况下有许多限制。针对URL数据的特点在经典多模式串匹配算法Wu-Manber基础上提出XWM-Tree算法和XWM-Hash算法。算法应用了模式串窗口选择,两阶段哈希和关联容器组织冲突链表等多种优化手段,大幅度提高了算法的匹配性能。在大规模真实数据集上的测试结果表明本文提出的算法匹配速度可以提高一倍以上,尤其是当最短模式串较长的时候更有优势。 展开更多
关键词 多模式串匹配 URL匹配 wu-manber算法
在线阅读 下载PDF
基于CUDA的Wu-Manber多模式匹配算法 被引量:1
14
作者 马计 王国平 杨明 《计算机系统应用》 2012年第3期51-54,175,共5页
多模式匹配是计算机科学中最基本的问题,其应用在许多领域,在一些情形下也是比较耗时的。GPU拥有比CPU更强的并行计算能力,随着CUDA架构的推出,GPU用于通用计算领域的并行编程工作变得更加轻松。实现了基于CUDA架构的Wu-Manber多模式匹... 多模式匹配是计算机科学中最基本的问题,其应用在许多领域,在一些情形下也是比较耗时的。GPU拥有比CPU更强的并行计算能力,随着CUDA架构的推出,GPU用于通用计算领域的并行编程工作变得更加轻松。实现了基于CUDA架构的Wu-Manber多模式匹配算法,实验结果表明,相比传统串行算法而言,本文的实现获得了10倍以上的加速。 展开更多
关键词 多模式匹配 GPU CUDA wu-manber
在线阅读 下载PDF
Wu-Manber算法的一种综合改进
15
作者 莫德敏 刘耀军 《太原师范学院学报(自然科学版)》 2008年第2期72-75,共4页
对孙晓山等提出的Wu-Manber算法的后缀改进算法作进一步的改进,在对next链表进行分类的同时把含有互为后缀的结点提到链表的前部,并整合了张鑫提出的精神的不良字符转移和弱化的良好后缀转移的改进方法,新改进的算法充分利用以上两种算... 对孙晓山等提出的Wu-Manber算法的后缀改进算法作进一步的改进,在对next链表进行分类的同时把含有互为后缀的结点提到链表的前部,并整合了张鑫提出的精神的不良字符转移和弱化的良好后缀转移的改进方法,新改进的算法充分利用以上两种算法的优点,使区配过程中字符比较好的次数得到了进一步减少.新改进的Wu-Manber匹配算法在实验中取得了更高的效率. 展开更多
关键词 wu-manber算法 多关键字匹配 模式匹配 字符串匹配 信息检索
在线阅读 下载PDF
改进的Wu-Manber多模式串匹配算法的设计与实现 被引量:1
16
作者 姚永安 《广东通信技术》 2017年第1期24-26,50,共4页
多模式串匹配算法作为入侵检测系统中的关键算法,针对Wu-Manber多模式串匹配算法效率低的问题,提出利用算法I_Sunday模式匹配的跳跃思想,对WuManber算法进行重新设计与实现。改进后的IS_WM算法最大移动距离由原来(mB+1)增大至(2m+B)。... 多模式串匹配算法作为入侵检测系统中的关键算法,针对Wu-Manber多模式串匹配算法效率低的问题,提出利用算法I_Sunday模式匹配的跳跃思想,对WuManber算法进行重新设计与实现。改进后的IS_WM算法最大移动距离由原来(mB+1)增大至(2m+B)。为验证IS_WM算法的性能,对Wu-Manber算法、QWM算法和IS_WM算法进行实验,在同等条件下,考察模式串规模及最短模式串长度对匹配窗口移动次数的影响。实验结果表明IS_WM算法能够跳过更多的坏块字符,大大减少了块字符匹配次数,从而缩短模式串匹配时间。 展开更多
关键词 wu-manber 算法 I_Sunday算法 IS_WM算法 入侵检测系统
在线阅读 下载PDF
一种改进的Wu-Manber多模式串匹配算法
17
作者 刘征宇 刘学生 《自动化应用》 2015年第5期5-8,共4页
针对Wu-Manber算法在模式串后缀与文本后缀相匹配的情况下,至少需要进行一次查找PREFIX表的比较操作的特点,提出一种改进的Wu-Manber算法,将PREFIX表信息合并到HASH表中,减少匹配过程中的查表比较次数,提高算法性能。
关键词 wu-manber算法 多模式串匹配 后缀信息 前缀信息
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
18
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
19
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
20
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部