Jake Barnes is not the only wounded character in The Sun Also Rises (1926): All the major characters, except Bill, and several minor characters are also wounded. This paper examines how those wounded characters ref...Jake Barnes is not the only wounded character in The Sun Also Rises (1926): All the major characters, except Bill, and several minor characters are also wounded. This paper examines how those wounded characters reflect on both Jake Barnes and Hemingway's philosophy that we are all wounded in life and must make choices that allow us to live as best we can without hurting others. By close reading, the author hopes to show how two characters, Belmonte and Brett Ashley, may have been undervalued by critics, and to also show Hemingway's essential ambiguity in portraying human relationships, leaving final judgments up to his readers.展开更多
When the troops are attacked by nuclear weapons, the number of the wounded and thetype and the condition of the wounds will change with the equivalence and the way of explosion, thenumber of soldiers taking part, the ...When the troops are attacked by nuclear weapons, the number of the wounded and thetype and the condition of the wounds will change with the equivalence and the way of explosion, thenumber of soldiers taking part, the area of the disposition of the troops, and the conditions of protectionof the personnel. Whether the wounded by nuclear weapons who is pouring in enormous amountcan be correctly classified in time has a very important relation in enhancing the effect of the first-aidand the treatment later on. We worked out a programme about the defined types and criteria of thewounded by nuclear weapons beforehand to be stored into the microcomputer. After nuclear cxplo-sion, it is necessary only to input the known data into the microcomputer from the key-board, thecomputer will immediately tell the number of the wounded of various types, the number of peopleand the time needed to perform the triage task and the surgical personnel needed to performthe operations, so that medical supporting programme can be selected or adjusted on time and the ef-ficiency and quality of the triage and first-aid work can be improved.展开更多
<strong>Objective: </strong>The purpose is to formulate treatment strategies of batches of the wounded and partial first-aid procedures, and further improve the emergency rescue capability of hospitals. &l...<strong>Objective: </strong>The purpose is to formulate treatment strategies of batches of the wounded and partial first-aid procedures, and further improve the emergency rescue capability of hospitals. <strong>Methods: </strong>This study analyzed the emergency treatment case that we participated in. In this case, we used various means to start the emergency plan, run the emergency procedures, optimize diagnosis, treatment, and rescue procedures, mobilize medical rescue resources, provide a reference for emergency command decisions, formulate a set of coping strategies of tertiary general hospitals on public emergencies. <strong>Results:</strong> Through the scientific and effective management of our hospital, 20 wounded have been discharged from the hospital and achieved the ideal effect of zero deaths in the hospital. <strong>Conclusions:</strong> The new mode of first-aid and health emergency management on the scene of modern disaster needs to find ways to minimize the loss of life and property brought by public emergencies, integrate the various sections of modern disaster medicine, integrate a large number of international and domestic basic and clinical research achievements of disaster first-aid, and upgrade to information, digital system.展开更多
Objective: to explore the application value of the nursing emergency plan in the treatment of the reception group room of the medical station in the plateau area. Methods: review the rules of the nursing emergency pla...Objective: to explore the application value of the nursing emergency plan in the treatment of the reception group room of the medical station in the plateau area. Methods: review the rules of the nursing emergency plan formulated by our medical team in 2020 and its role in treating the mass injured in the receiving group room.Results: the treatment process of receiving the injured was intense, efficient and orderly. After rapid and effective hospital treatment, among 259 patients in 23 batches, 7 patients were transferred to the rear hospital after their vital signs were stable and the hospital for further treatment was recovered and discharged. All the others were recovered and discharged by our medical team, and none of them died or were disabled. Conclusion: under the plateau conditions, the success rate of treating the wounded patients can be improved by establishing the effective nursing emergency plan, standardizing the nursing management of the group room, and strengthening the specialized nursing and personalized nursing of the wounded.展开更多
[ Objective] The mechanism of antiseptic cream myogenic was revealed from the angle of cytokines to provide theoretical basis for clini- cal application. [ Method] Experiment with Wistar rats were studied, by detectin...[ Objective] The mechanism of antiseptic cream myogenic was revealed from the angle of cytokines to provide theoretical basis for clini- cal application. [ Method] Experiment with Wistar rats were studied, by detecting indicators such as the expression level of VEGF and bFGFmRNA of skin coloboma model rats wound tissue. [ Result] The results showed that: Antiseptic cream myogenic can improve VEGF and bFGFmRNA levels of the wound tissue,[Conclusion] Antiseptic cream myogenic can promote the proliferation and differentiation of vascular endothelial call and fibro- blast, and thus promote wound healing.展开更多
In modern wars bullet wounds caused by steel balls represent one of the majorkinds of combat wounds,and developing the criteria for necrosis of tissues in steel-ball-wounded organisms is therefore of great significanc...In modern wars bullet wounds caused by steel balls represent one of the majorkinds of combat wounds,and developing the criteria for necrosis of tissues in steel-ball-wounded organisms is therefore of great significance for both military and clini-cal applications.Severe injuries can be readily recognized by naked eyes,but slighterones are often difficult to be identified by visual examination or experience.Moreoverit seems to be unlikely to establish consiatent criteria for visual examination展开更多
Okra has attracted increasing interests to be used as functional food ingredients due to various human health benefits such as the inhibition ofα-glucosidase andα-amylase in this paper.Results showed that theα-gluc...Okra has attracted increasing interests to be used as functional food ingredients due to various human health benefits such as the inhibition ofα-glucosidase andα-amylase in this paper.Results showed that theα-glucosidase(andα-amylase)inhibition capacity of polyphenols in wounded okra significantly increased by 31.6%(and 28.6%)when the wounding intensity was 1.87 cm2/g.The UPLC-MS analysis indicated that quercetin and catechin derivatives were the major polyphenols in wounded okra,of which quercetin 3-O-gentiobioside and epigallocatechin dimer were the most abundant compounds.Fluorescence quenching confirmed that wound and healing process promoted the affinity betweenα-glucosidase(andα-amylase)and polyphenols,which interacted with enzymes in a mixed type manner.Molecular docking suggested that quercetin-3-O-gentiobioside,quercetin-3-O-glucosyl-xyloside,isoquercitrin,querce-tin-3-O-(malonyl)-glucoside,epigallocatechin,and epigallocatechin dimer can interact with the activity cavities of enzymes by amino acids residues(Arg195,Leu162,and His305).The results of this study support the potentials of wounded okra to inhibitα-glucosidase andα-amylase in the food industries,without associated risks to consumers.展开更多
BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds pre...BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds present significant therapeutic challenges,requiring novel strategies to improve healing outcomes.AIM To investigate the potential of fetal dermal mesenchymal stem cells(FDMSCs)in enhancing wound healing through modulation of macrophage polarization,specifically by promoting the M2 phenotype to address inflammatory responses in chronic wounds.METHODS FDMSCs were isolated from BalB/C mice and co-cultured with RAW264.7 macrophages to assess their effects on macrophage polarization.Flow cytometry,quantitative reverse transcriptase polymerase chain reaction,and histological analyses were employed to evaluate shifts in macrophage phenotype and wound healing in a mouse model.Statistical analysis was performed using GraphPad Prism.RESULTS FDMSCs induced macrophage polarization from the M1 to M2 phenotype,as demonstrated by a reduction in proinflammatory markers(inducible nitric oxide synthase,interleukin-6)and an increase in anti-inflammatory markers[mannose receptor(CD206),arginase-1]in co-cultured RAW264.7 macrophages.These shifts were confirmed by flow cytometry.In an acute skin wound model,FDMSC-treated mice exhibited faster wound healing,enhanced collagen deposition,and improved vascular regeneration compared to controls.Significantly higher expression of arginase-1 further indicated an enriched M2 macrophage environment.CONCLUSION FDMSCs effectively modulate macrophage polarization from M1 to M2,reduce inflammation,and enhance tissue repair,demonstrating their potential as an immunomodulatory strategy in wound healing.These findings highlight the promising therapeutic application of FDMSCs in managing chronic wounds.展开更多
Tianjin Medical University General Hospital treated 233 wounded in 8.12 Tinjin Port explosion. Here we would like to analyze the treatment process for the wounded, and share the experiences of orga- nization and manag...Tianjin Medical University General Hospital treated 233 wounded in 8.12 Tinjin Port explosion. Here we would like to analyze the treatment process for the wounded, and share the experiences of orga- nization and management for emergency rescue operation.展开更多
BACKGROUND Diabetic foot ulcers(DFUs)present a significant clinical challenge due to their high prevalence and profound impact on morbidity.Ultrasound-assisted wound debridement(UAWD)has emerged as a potential therape...BACKGROUND Diabetic foot ulcers(DFUs)present a significant clinical challenge due to their high prevalence and profound impact on morbidity.Ultrasound-assisted wound debridement(UAWD)has emerged as a potential therapeutic modality to improve healing outcomes in DFU management.AIM To evaluate the efficacy of UAWD in treating DFUs on wound closure rates,treatment duration,and quality of life outcomes.METHODS This systematic review and meta-analysis followed PRISMA guidelines,systematically searching PubMed,Embase,Web of Science,and the Cochrane Library with no date restrictions.Randomized controlled trials(RCTs)that evaluated the efficacy of UAWD in DFU treatment were included.Data were independently extracted by two reviewers,with discrepancies resolved through consensus or third-party consultation.The risk of bias was assessed using the Cochrane tool.χ2 and I2 statistics assessed heterogeneity,informing the use of fixed or random-effects models for meta-analysis,supplemented by sensitivity analysis and publication bias assessment through funnel plots and Egger's test.RESULTS From 1255 articles,seven RCTs met the inclusion criteria.The studies demonstrated that UAWD significantly reduced DFU healing time(standardized mean difference=-0.78,95%CI:-0.97 to-0.60,P<0.001)and increased healing rates(odds ratio=9.96,95%CI:5.99 to 16.56,P<0.001)compared to standard care.Sensitivity analysis confirmed the stability of these results,and no significant publication bias was detected.CONCLUSION UAWD is a promising adjunctive treatment for DFUs,significantly reducing healing times and increasing healing rates.These findings advocate for the integration of UAWD into standard DFU care protocols.展开更多
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages,ultimately impairing its normal physiological function.A...Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages,ultimately impairing its normal physiological function.Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration,promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions.The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties.However,a comprehensive understanding of the underlying mechanisms remains somewhat elusive,limiting the broader application of these innovations.In this review,we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin.The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration.The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity,facilitating efficient cellular reprogramming and,consequently,promoting the regeneration of skin appendages.In summary,the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing,coupled with the restoration of multiple skin appendage functions.展开更多
BACKGROUND Skin wounds are common injuries that affect quality of life and incur high costs.A considerable portion of healthcare resources in Western countries is allocated to wound treatment,mainly using mechanical,b...BACKGROUND Skin wounds are common injuries that affect quality of life and incur high costs.A considerable portion of healthcare resources in Western countries is allocated to wound treatment,mainly using mechanical,biological,or artificial dressings.Biological and artificial dressings,such as hydrogels,are preferred for their biocompatibility.Platelet concentrates,such as platelet-rich plasma(PRP)and platelet-rich fibrin(PRF),stand out for accelerating tissue repair and minimizing risks of allergies and rejection.This study developed PRF and PRP-based dressings to treat skin wounds in an animal model,evaluating their functionality and efficiency in accelerating the tissue repair process.AIM To develop wound dressings based on platelet concentrates and evaluating their efficiency in treating skin wounds in Wistar rats.METHODS Wistar rats,both male and female,were subjected to the creation of a skin wound,distributed into groups(n=64/group),and treated with Carbopol(negative control);PRP+Carbopol;PRF+Carbopol;or PRF+CaCl_(2)+Carbopol,on days zero(D0),D3,D7,D14,and D21.PRP and PRF were obtained only from male rats.On D3,D7,D14,and D21,the wounds were analyzed for area,contraction rate,and histopathology of the tissue repair process.RESULTS The PRF-based dressing was more effective in accelerating wound closure early in the tissue repair process(up to D7),while PRF+CaCl_(2) seemed to delay the process,as wound closure was not complete by D21.Regarding macroscopic parameters,animals treated with PRF+CaCl_(2) showed significantly more crusting(necrosis)early in the repair process(D3).In terms of histopathological parameters,the PRF group exhibited significant collagenization at the later stages of the repair process(D14 and D21).By D21,fibroblast proliferation and inflammatory infiltration were higher in the PRP group.Animals treated with PRF+CaCl_(2) experienced a more pronounced inflammatory response up to D7,which diminished from D14 onwards.CONCLUSION The PRF-based dressing was effective in accelerating the closure of cutaneous wounds in Wistar rats early in the process and in aiding tissue repair at the later stages.展开更多
Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance ...Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes.展开更多
Abnormal wound scarring often leads to functional impairments and cosmetic deformities,primarily driven by the prolonged activation of the TGF-β/Smad signaling pathway.Addressing this challenge,we developed a biomime...Abnormal wound scarring often leads to functional impairments and cosmetic deformities,primarily driven by the prolonged activation of the TGF-β/Smad signaling pathway.Addressing this challenge,we developed a biomimetic scaffold aimed at facilitating rapid and scarless wound healing.This highly in-tegrated 3D-printed dermal scaffold comprised modified recombinant human type III collagen(rhCOLIII-MA),gelatin methacrylate(GelMA),and liposomes encapsulating SB431542 to target TGF-β1(Lip@SB).The rhCOLIII-MA/GelMA(CG)scaffold retained inherent biomaterial characteristics,exhibited tailored physicochemical properties,and demonstrated favorable biocompatibility.Moreover,the Lip@SB-loaded CG scaffold(CGL)effectively promoted in vitro wound healing,while enabling controlled release of SB431542 to inhibit pathological collagen deposition.In a full-thickness skin defect rat model,the CGL dermal scaffold combined with split-thickness skin graft(STSG)minimized scar contraction,stimulated functional neovascularization,and enhanced graft aesthetics comparable to normal skin.Remarkably,the performance of the CGL scaffold surpassed that of commercially available anti-scarring alternatives.This innovative strategy presents a straightforward approach toward scarless skin regeneration and holds promise in alleviating the prolonged,painful postoperative rehabilitation.展开更多
Histopathological analysis of chronic wounds is crucial for clinicians to accurately assess wound healing progress and detect potential malignancy.However,traditional pathological tissue sections require specific stai...Histopathological analysis of chronic wounds is crucial for clinicians to accurately assess wound healing progress and detect potential malignancy.However,traditional pathological tissue sections require specific staining procedures involving carcinogenic chemicals.This study proposes an interdisciplinary approach merging materials science,medicine,and artificial intelligence(AI)to develop a virtual staining technique and intelligent evaluation model based on deep learning for chronic wound tissue pathology.This innovation aims to enhance clinical diagnosis and treatment by offering personalized AI-driven therapeutic strategies.By establishing a mouse model of chronic wounds and using a series of hydrogel wound dressings,tissue pathology sections were periodically collected for manual staining and healing assessment.We focused on leveraging the pix2pix image translation framework within deep learning networks.Through CNN models implemented in Python using PyTorch,our study involves learning and feature extraction for region segmentation of pathological slides.Comparative analysis between virtual staining and manual staining results,along with healing diagnosis conclusions,aims to optimize AI models.Ultimately,this approach integrates new metrics such as image recognition,quantitative analysis,and digital diagnostics to formulate an intelligent wound assessment model,facilitating smart monitoring and personalized treatment of wounds.In blind evaluation by pathologists,minimal disparities were found between virtual and conventional histologically stained images of murine wound tissue.The evaluation used pathologists’average scores on real stained images as a benchmark.The scores for virtual stained images were 71.1%for cellular features,75.4%for tissue structures,and 77.8%for overall assessment.Metrics such as PSNR(20.265)and SSIM(0.634)demonstrated our algorithms’superior performance over existing networks.Eight pathological features such as epidermis,hair follicles,and granulation tissue can be accurately identified,and the images were found to be more faithful to the actual tissue feature distribution when compared to manually annotated data.展开更多
After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact...After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.展开更多
BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeuti...BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing.However,the complex mechanism,the difficulty in clinical translation,and the large heterogeneity present significant challenges.Hence,this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing.AIM To examine the relevant literature on macrophage polarization in DFU healing.METHODS A bibliometric analysis was conducted using the Web of Science database.Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software(VOSviewer and CiteSpace)and bibliometric online platforms.The obtained literature was then subjected to visualization and analysis of different countries/regions,institutions,journals,authors,and keywords to reveal the research’s major trends and focus.RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023,especially in the latter period.Chinese researchers were the most prolific in this field,with 217 publications,while American researchers had been engaged in this field for a longer period.Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field.Shanghai Jiao Tong University was the institution with the most publications(27).The keywords“bone marrow”,“adjustment,replacement,response,tissue repair”,and“activation,repair,differentiation”appeared more frequently.The study of macrophage polarization in DFU healing focused on the regulatory mechanism,gene expression,and other aspects.CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database.The key hotspots in this field mainly include the regulation of macrophage activation,gene expression,wound tissue repair,and new wound materials.This study provides references for future research directions.展开更多
Diabetic foot ulcers(DFUs)represents a significant public health issue,with a rising global prevalence and severe potential complications including amputation.Traditional treatments often fall short due to various lim...Diabetic foot ulcers(DFUs)represents a significant public health issue,with a rising global prevalence and severe potential complications including amputation.Traditional treatments often fall short due to various limitations such as high recurrence rates and extensive resource utilization.This editorial explores the innovative use of acellular fish skin grafts as a transformative approach in DFU management.Recent studies and a detailed case report highlight the efficacy of acellular fish skin grafts in accelerating wound closure,reducing dressing changes,and enhancing patient outcomes with a lower socio-economic burden.Despite their promise,challenges such as limited availability,patient acceptance,and the need for further research persist.Addressing these through more extensive randomized controlled trials and fostering a multidisciplinary treatment approach may optimize DFU care and reduce the global health burden associated with these complex wounds.展开更多
Blister wounds are featured with over-generated wound exudate and extensive skin peeling,call for breathable temporary skin with effective exudate management,and function as an extracellular matrix to accelerate regen...Blister wounds are featured with over-generated wound exudate and extensive skin peeling,call for breathable temporary skin with effective exudate management,and function as an extracellular matrix to accelerate regeneration of wound skin.Traditional extracellular matrix(ECM)mimicked nanofibrous 3D scaffold and corresponding hydrogel composites suffer from poor mechanical strength,and the wound exudate management behavior is seldom studied.Herein,we proposed the strategy to enhance the mechanical properties of a 3D nanofiber scaffold via constructing a long nanofiber(NF)and sodium alginate(SA)aerogel interpenetrated architecture(NF/SA).The as-prepared scaffold was then evaluated as temporary skin for a full-thickness defect wound.After absorption of blister fluid,the aerogel transferred into a hydrogel and imparted a wet wound care environment with a water-vapor transmission rate of(6001.90±522.04)g/(m^(2)·24 h),and Young s modulus of(2.97±0.38)MPa.The exudate was continuously refreshed by a directed and dynamic pump,followed by volatilization driven by Brownian motion.Meanwhile,the NF/SA scaffold exhibited decent compatibility with blister fluid.The basic fibroblast growth factor(bFGF)-loaded NF/SA improved the wound healing rate by 36.46%on Day 3 and 15.34%on Day 7 in the full-thickness defect wound model.展开更多
Appreciation of soft-tissue thickness(STT)at surgical sites is an increasingly recognized aspect of arthroplasty procedures as it may potentially impacting postoperative outcomes.Recent research has focused on the pre...Appreciation of soft-tissue thickness(STT)at surgical sites is an increasingly recognized aspect of arthroplasty procedures as it may potentially impacting postoperative outcomes.Recent research has focused on the predictive value of preoperative STT measurements for complications following various forms of arthroplasty,particularly infections,across procedures such as total knee,hip,shoulder,and ankle replacements.Several studies have indicated that increased STT is associated with a higher risk of complications,including infection and wound healing issues.The assessment of STT before surgery could play a crucial role in identifying patients at a higher risk of complications and may be instru-mental in guiding preoperative planning to optimize outcomes in arthroplasty procedures.Standardized measurement techniques and further research are essential to enhance the reliability and clinical utility of STT assessment for arthro-plasty surgery.展开更多
文摘Jake Barnes is not the only wounded character in The Sun Also Rises (1926): All the major characters, except Bill, and several minor characters are also wounded. This paper examines how those wounded characters reflect on both Jake Barnes and Hemingway's philosophy that we are all wounded in life and must make choices that allow us to live as best we can without hurting others. By close reading, the author hopes to show how two characters, Belmonte and Brett Ashley, may have been undervalued by critics, and to also show Hemingway's essential ambiguity in portraying human relationships, leaving final judgments up to his readers.
文摘When the troops are attacked by nuclear weapons, the number of the wounded and thetype and the condition of the wounds will change with the equivalence and the way of explosion, thenumber of soldiers taking part, the area of the disposition of the troops, and the conditions of protectionof the personnel. Whether the wounded by nuclear weapons who is pouring in enormous amountcan be correctly classified in time has a very important relation in enhancing the effect of the first-aidand the treatment later on. We worked out a programme about the defined types and criteria of thewounded by nuclear weapons beforehand to be stored into the microcomputer. After nuclear cxplo-sion, it is necessary only to input the known data into the microcomputer from the key-board, thecomputer will immediately tell the number of the wounded of various types, the number of peopleand the time needed to perform the triage task and the surgical personnel needed to performthe operations, so that medical supporting programme can be selected or adjusted on time and the ef-ficiency and quality of the triage and first-aid work can be improved.
文摘<strong>Objective: </strong>The purpose is to formulate treatment strategies of batches of the wounded and partial first-aid procedures, and further improve the emergency rescue capability of hospitals. <strong>Methods: </strong>This study analyzed the emergency treatment case that we participated in. In this case, we used various means to start the emergency plan, run the emergency procedures, optimize diagnosis, treatment, and rescue procedures, mobilize medical rescue resources, provide a reference for emergency command decisions, formulate a set of coping strategies of tertiary general hospitals on public emergencies. <strong>Results:</strong> Through the scientific and effective management of our hospital, 20 wounded have been discharged from the hospital and achieved the ideal effect of zero deaths in the hospital. <strong>Conclusions:</strong> The new mode of first-aid and health emergency management on the scene of modern disaster needs to find ways to minimize the loss of life and property brought by public emergencies, integrate the various sections of modern disaster medicine, integrate a large number of international and domestic basic and clinical research achievements of disaster first-aid, and upgrade to information, digital system.
文摘Objective: to explore the application value of the nursing emergency plan in the treatment of the reception group room of the medical station in the plateau area. Methods: review the rules of the nursing emergency plan formulated by our medical team in 2020 and its role in treating the mass injured in the receiving group room.Results: the treatment process of receiving the injured was intense, efficient and orderly. After rapid and effective hospital treatment, among 259 patients in 23 batches, 7 patients were transferred to the rear hospital after their vital signs were stable and the hospital for further treatment was recovered and discharged. All the others were recovered and discharged by our medical team, and none of them died or were disabled. Conclusion: under the plateau conditions, the success rate of treating the wounded patients can be improved by establishing the effective nursing emergency plan, standardizing the nursing management of the group room, and strengthening the specialized nursing and personalized nursing of the wounded.
基金funded by the Northeast Agricultural University Talent Fund
文摘[ Objective] The mechanism of antiseptic cream myogenic was revealed from the angle of cytokines to provide theoretical basis for clini- cal application. [ Method] Experiment with Wistar rats were studied, by detecting indicators such as the expression level of VEGF and bFGFmRNA of skin coloboma model rats wound tissue. [ Result] The results showed that: Antiseptic cream myogenic can improve VEGF and bFGFmRNA levels of the wound tissue,[Conclusion] Antiseptic cream myogenic can promote the proliferation and differentiation of vascular endothelial call and fibro- blast, and thus promote wound healing.
文摘In modern wars bullet wounds caused by steel balls represent one of the majorkinds of combat wounds,and developing the criteria for necrosis of tissues in steel-ball-wounded organisms is therefore of great significance for both military and clini-cal applications.Severe injuries can be readily recognized by naked eyes,but slighterones are often difficult to be identified by visual examination or experience.Moreoverit seems to be unlikely to establish consiatent criteria for visual examination
基金subsidized by the Jiangsu Agriculture Science and Technology Innovation Fund(CX(18)3070)the China National Post-doctoral Program for Innovative Talents(BX20220137)+1 种基金the Jiangsu Excellent Postdoctoral Program(2022ZB495)which has enabled us to accomplish this study.
文摘Okra has attracted increasing interests to be used as functional food ingredients due to various human health benefits such as the inhibition ofα-glucosidase andα-amylase in this paper.Results showed that theα-glucosidase(andα-amylase)inhibition capacity of polyphenols in wounded okra significantly increased by 31.6%(and 28.6%)when the wounding intensity was 1.87 cm2/g.The UPLC-MS analysis indicated that quercetin and catechin derivatives were the major polyphenols in wounded okra,of which quercetin 3-O-gentiobioside and epigallocatechin dimer were the most abundant compounds.Fluorescence quenching confirmed that wound and healing process promoted the affinity betweenα-glucosidase(andα-amylase)and polyphenols,which interacted with enzymes in a mixed type manner.Molecular docking suggested that quercetin-3-O-gentiobioside,quercetin-3-O-glucosyl-xyloside,isoquercitrin,querce-tin-3-O-(malonyl)-glucoside,epigallocatechin,and epigallocatechin dimer can interact with the activity cavities of enzymes by amino acids residues(Arg195,Leu162,and His305).The results of this study support the potentials of wounded okra to inhibitα-glucosidase andα-amylase in the food industries,without associated risks to consumers.
基金National Natural Science Foundation of China,No.81873934and Jinan Science and Technology Planning Project,No.202225065.
文摘BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds present significant therapeutic challenges,requiring novel strategies to improve healing outcomes.AIM To investigate the potential of fetal dermal mesenchymal stem cells(FDMSCs)in enhancing wound healing through modulation of macrophage polarization,specifically by promoting the M2 phenotype to address inflammatory responses in chronic wounds.METHODS FDMSCs were isolated from BalB/C mice and co-cultured with RAW264.7 macrophages to assess their effects on macrophage polarization.Flow cytometry,quantitative reverse transcriptase polymerase chain reaction,and histological analyses were employed to evaluate shifts in macrophage phenotype and wound healing in a mouse model.Statistical analysis was performed using GraphPad Prism.RESULTS FDMSCs induced macrophage polarization from the M1 to M2 phenotype,as demonstrated by a reduction in proinflammatory markers(inducible nitric oxide synthase,interleukin-6)and an increase in anti-inflammatory markers[mannose receptor(CD206),arginase-1]in co-cultured RAW264.7 macrophages.These shifts were confirmed by flow cytometry.In an acute skin wound model,FDMSC-treated mice exhibited faster wound healing,enhanced collagen deposition,and improved vascular regeneration compared to controls.Significantly higher expression of arginase-1 further indicated an enriched M2 macrophage environment.CONCLUSION FDMSCs effectively modulate macrophage polarization from M1 to M2,reduce inflammation,and enhance tissue repair,demonstrating their potential as an immunomodulatory strategy in wound healing.These findings highlight the promising therapeutic application of FDMSCs in managing chronic wounds.
文摘Tianjin Medical University General Hospital treated 233 wounded in 8.12 Tinjin Port explosion. Here we would like to analyze the treatment process for the wounded, and share the experiences of orga- nization and management for emergency rescue operation.
基金Hubei Province Top Medical Youth Talent Program,Wuhan Knowledge Innovation Special Basic Research Project,No.2023020201020558Clinical Research Project of Affiliated Hospital of Guangdong Medical University,No.LCYJ2021B004 and No.LCYJ2019B010Science and Technology Plan Project of Zhanjiang,No.2022A01191.
文摘BACKGROUND Diabetic foot ulcers(DFUs)present a significant clinical challenge due to their high prevalence and profound impact on morbidity.Ultrasound-assisted wound debridement(UAWD)has emerged as a potential therapeutic modality to improve healing outcomes in DFU management.AIM To evaluate the efficacy of UAWD in treating DFUs on wound closure rates,treatment duration,and quality of life outcomes.METHODS This systematic review and meta-analysis followed PRISMA guidelines,systematically searching PubMed,Embase,Web of Science,and the Cochrane Library with no date restrictions.Randomized controlled trials(RCTs)that evaluated the efficacy of UAWD in DFU treatment were included.Data were independently extracted by two reviewers,with discrepancies resolved through consensus or third-party consultation.The risk of bias was assessed using the Cochrane tool.χ2 and I2 statistics assessed heterogeneity,informing the use of fixed or random-effects models for meta-analysis,supplemented by sensitivity analysis and publication bias assessment through funnel plots and Egger's test.RESULTS From 1255 articles,seven RCTs met the inclusion criteria.The studies demonstrated that UAWD significantly reduced DFU healing time(standardized mean difference=-0.78,95%CI:-0.97 to-0.60,P<0.001)and increased healing rates(odds ratio=9.96,95%CI:5.99 to 16.56,P<0.001)compared to standard care.Sensitivity analysis confirmed the stability of these results,and no significant publication bias was detected.CONCLUSION UAWD is a promising adjunctive treatment for DFUs,significantly reducing healing times and increasing healing rates.These findings advocate for the integration of UAWD into standard DFU care protocols.
基金supported in part by the National Nature Science Foundation of China(92268206,81830064)the CAMS Innovation Fund for Medical Sciences(CIFMS,2019-I2M-5-059)+4 种基金the Military Medical Research Projects(145AKJ260015000X,2022-JCJQ-ZB-09600)the Military Key Basic Research of Foundational Strengthening Program(2020-JCJQ-ZD-256-021)the Science Foundation of National Defense Science and Technology for Excellent Young(2022-JCJQ-ZQ-017)the Military Medical Research and Development Projects(AWS17J005,2019-126)the Specific Research Fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202317).
文摘Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages,ultimately impairing its normal physiological function.Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration,promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions.The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties.However,a comprehensive understanding of the underlying mechanisms remains somewhat elusive,limiting the broader application of these innovations.In this review,we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin.The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration.The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity,facilitating efficient cellular reprogramming and,consequently,promoting the regeneration of skin appendages.In summary,the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing,coupled with the restoration of multiple skin appendage functions.
文摘BACKGROUND Skin wounds are common injuries that affect quality of life and incur high costs.A considerable portion of healthcare resources in Western countries is allocated to wound treatment,mainly using mechanical,biological,or artificial dressings.Biological and artificial dressings,such as hydrogels,are preferred for their biocompatibility.Platelet concentrates,such as platelet-rich plasma(PRP)and platelet-rich fibrin(PRF),stand out for accelerating tissue repair and minimizing risks of allergies and rejection.This study developed PRF and PRP-based dressings to treat skin wounds in an animal model,evaluating their functionality and efficiency in accelerating the tissue repair process.AIM To develop wound dressings based on platelet concentrates and evaluating their efficiency in treating skin wounds in Wistar rats.METHODS Wistar rats,both male and female,were subjected to the creation of a skin wound,distributed into groups(n=64/group),and treated with Carbopol(negative control);PRP+Carbopol;PRF+Carbopol;or PRF+CaCl_(2)+Carbopol,on days zero(D0),D3,D7,D14,and D21.PRP and PRF were obtained only from male rats.On D3,D7,D14,and D21,the wounds were analyzed for area,contraction rate,and histopathology of the tissue repair process.RESULTS The PRF-based dressing was more effective in accelerating wound closure early in the tissue repair process(up to D7),while PRF+CaCl_(2) seemed to delay the process,as wound closure was not complete by D21.Regarding macroscopic parameters,animals treated with PRF+CaCl_(2) showed significantly more crusting(necrosis)early in the repair process(D3).In terms of histopathological parameters,the PRF group exhibited significant collagenization at the later stages of the repair process(D14 and D21).By D21,fibroblast proliferation and inflammatory infiltration were higher in the PRP group.Animals treated with PRF+CaCl_(2) experienced a more pronounced inflammatory response up to D7,which diminished from D14 onwards.CONCLUSION The PRF-based dressing was effective in accelerating the closure of cutaneous wounds in Wistar rats early in the process and in aiding tissue repair at the later stages.
基金the Talent Management Project of Prince of Songkla University
文摘Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes.
基金supported by the National Natural Science Foundation of China(No.82272297).
文摘Abnormal wound scarring often leads to functional impairments and cosmetic deformities,primarily driven by the prolonged activation of the TGF-β/Smad signaling pathway.Addressing this challenge,we developed a biomimetic scaffold aimed at facilitating rapid and scarless wound healing.This highly in-tegrated 3D-printed dermal scaffold comprised modified recombinant human type III collagen(rhCOLIII-MA),gelatin methacrylate(GelMA),and liposomes encapsulating SB431542 to target TGF-β1(Lip@SB).The rhCOLIII-MA/GelMA(CG)scaffold retained inherent biomaterial characteristics,exhibited tailored physicochemical properties,and demonstrated favorable biocompatibility.Moreover,the Lip@SB-loaded CG scaffold(CGL)effectively promoted in vitro wound healing,while enabling controlled release of SB431542 to inhibit pathological collagen deposition.In a full-thickness skin defect rat model,the CGL dermal scaffold combined with split-thickness skin graft(STSG)minimized scar contraction,stimulated functional neovascularization,and enhanced graft aesthetics comparable to normal skin.Remarkably,the performance of the CGL scaffold surpassed that of commercially available anti-scarring alternatives.This innovative strategy presents a straightforward approach toward scarless skin regeneration and holds promise in alleviating the prolonged,painful postoperative rehabilitation.
基金supported by the Fundamental Research Funds for the Central Universities(No.20720230037)the National Natural Science Foundation of China(No.52273305)+2 种基金Natural Science Foundation of Fujian Province of China(No.2023J05012)State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory(Nos.2023XAKJ0103071,2023XAKJ0102061)Natural Science Foundation of Xiamen,China(No.3502Z20227010).
文摘Histopathological analysis of chronic wounds is crucial for clinicians to accurately assess wound healing progress and detect potential malignancy.However,traditional pathological tissue sections require specific staining procedures involving carcinogenic chemicals.This study proposes an interdisciplinary approach merging materials science,medicine,and artificial intelligence(AI)to develop a virtual staining technique and intelligent evaluation model based on deep learning for chronic wound tissue pathology.This innovation aims to enhance clinical diagnosis and treatment by offering personalized AI-driven therapeutic strategies.By establishing a mouse model of chronic wounds and using a series of hydrogel wound dressings,tissue pathology sections were periodically collected for manual staining and healing assessment.We focused on leveraging the pix2pix image translation framework within deep learning networks.Through CNN models implemented in Python using PyTorch,our study involves learning and feature extraction for region segmentation of pathological slides.Comparative analysis between virtual staining and manual staining results,along with healing diagnosis conclusions,aims to optimize AI models.Ultimately,this approach integrates new metrics such as image recognition,quantitative analysis,and digital diagnostics to formulate an intelligent wound assessment model,facilitating smart monitoring and personalized treatment of wounds.In blind evaluation by pathologists,minimal disparities were found between virtual and conventional histologically stained images of murine wound tissue.The evaluation used pathologists’average scores on real stained images as a benchmark.The scores for virtual stained images were 71.1%for cellular features,75.4%for tissue structures,and 77.8%for overall assessment.Metrics such as PSNR(20.265)and SSIM(0.634)demonstrated our algorithms’superior performance over existing networks.Eight pathological features such as epidermis,hair follicles,and granulation tissue can be accurately identified,and the images were found to be more faithful to the actual tissue feature distribution when compared to manually annotated data.
基金supported by European Regional Development Funds RE0022527 ZEBRATOX(EU-Région Réunion-French State national counterpart,to Nicolas Diotel and Jean-Loup Bascands).
文摘After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
基金Supported by the Qilu Medical School Traditional Chinese Medicine Academic School Inheritance Project,No.93 LW[2022]Construction Project of the Inheritance Studio of National Famous Traditional Chinese Medicine Experts,Traditional Chinese Medicine Teaching Letter No.75[2022]Qilu Health and Fitness Talents in 2019,No.3 LWRZ[2020].
文摘BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing.However,the complex mechanism,the difficulty in clinical translation,and the large heterogeneity present significant challenges.Hence,this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing.AIM To examine the relevant literature on macrophage polarization in DFU healing.METHODS A bibliometric analysis was conducted using the Web of Science database.Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software(VOSviewer and CiteSpace)and bibliometric online platforms.The obtained literature was then subjected to visualization and analysis of different countries/regions,institutions,journals,authors,and keywords to reveal the research’s major trends and focus.RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023,especially in the latter period.Chinese researchers were the most prolific in this field,with 217 publications,while American researchers had been engaged in this field for a longer period.Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field.Shanghai Jiao Tong University was the institution with the most publications(27).The keywords“bone marrow”,“adjustment,replacement,response,tissue repair”,and“activation,repair,differentiation”appeared more frequently.The study of macrophage polarization in DFU healing focused on the regulatory mechanism,gene expression,and other aspects.CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database.The key hotspots in this field mainly include the regulation of macrophage activation,gene expression,wound tissue repair,and new wound materials.This study provides references for future research directions.
基金Supported by the Zhejiang Medical Technology Project,No.2022RC009 and No.2024KY645.
文摘Diabetic foot ulcers(DFUs)represents a significant public health issue,with a rising global prevalence and severe potential complications including amputation.Traditional treatments often fall short due to various limitations such as high recurrence rates and extensive resource utilization.This editorial explores the innovative use of acellular fish skin grafts as a transformative approach in DFU management.Recent studies and a detailed case report highlight the efficacy of acellular fish skin grafts in accelerating wound closure,reducing dressing changes,and enhancing patient outcomes with a lower socio-economic burden.Despite their promise,challenges such as limited availability,patient acceptance,and the need for further research persist.Addressing these through more extensive randomized controlled trials and fostering a multidisciplinary treatment approach may optimize DFU care and reduce the global health burden associated with these complex wounds.
基金Natural Science Foundation of Shanghai(General Program,22ZR1409500)China Postdoctoral Science Foundation(23M742317,GZB240446)+3 种基金Shanghai Science and Technology Innovation Action Plan(22S31905500)Medical Engineering Fund of Fudan University(yg2021-032)Fundamental Research Project of CNTAC(J202104)Program of Introducing Talents of Discipline to Universities(BP0719035)。
文摘Blister wounds are featured with over-generated wound exudate and extensive skin peeling,call for breathable temporary skin with effective exudate management,and function as an extracellular matrix to accelerate regeneration of wound skin.Traditional extracellular matrix(ECM)mimicked nanofibrous 3D scaffold and corresponding hydrogel composites suffer from poor mechanical strength,and the wound exudate management behavior is seldom studied.Herein,we proposed the strategy to enhance the mechanical properties of a 3D nanofiber scaffold via constructing a long nanofiber(NF)and sodium alginate(SA)aerogel interpenetrated architecture(NF/SA).The as-prepared scaffold was then evaluated as temporary skin for a full-thickness defect wound.After absorption of blister fluid,the aerogel transferred into a hydrogel and imparted a wet wound care environment with a water-vapor transmission rate of(6001.90±522.04)g/(m^(2)·24 h),and Young s modulus of(2.97±0.38)MPa.The exudate was continuously refreshed by a directed and dynamic pump,followed by volatilization driven by Brownian motion.Meanwhile,the NF/SA scaffold exhibited decent compatibility with blister fluid.The basic fibroblast growth factor(bFGF)-loaded NF/SA improved the wound healing rate by 36.46%on Day 3 and 15.34%on Day 7 in the full-thickness defect wound model.
文摘Appreciation of soft-tissue thickness(STT)at surgical sites is an increasingly recognized aspect of arthroplasty procedures as it may potentially impacting postoperative outcomes.Recent research has focused on the predictive value of preoperative STT measurements for complications following various forms of arthroplasty,particularly infections,across procedures such as total knee,hip,shoulder,and ankle replacements.Several studies have indicated that increased STT is associated with a higher risk of complications,including infection and wound healing issues.The assessment of STT before surgery could play a crucial role in identifying patients at a higher risk of complications and may be instru-mental in guiding preoperative planning to optimize outcomes in arthroplasty procedures.Standardized measurement techniques and further research are essential to enhance the reliability and clinical utility of STT assessment for arthro-plasty surgery.