期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
OPTIMAL BIRKHOFF INTERPOLATION AND BIRKHOFF NUMBERS IN SOME FUNCTION SPACES 被引量:1
1
作者 许贵桥 刘永平 郭丹丹 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期125-142,共18页
This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function... This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal.We also show that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal when the function values of the two endpoints are included in the interpolation systems. 展开更多
关键词 optimal Birkhoff interpolation Birkhoff number Sobolev space worst case setting
在线阅读 下载PDF
Optimal Lagrange Interpolation of a Class of Infinitely Differentiable Functions
2
作者 Mengjin MA Hui WANG Guiqiao XU 《Journal of Mathematical Research with Applications》 CSCD 2021年第6期629-638,共10页
This paper investigates the optimal Lagrange interpolation of a class F∞of infinitely differentiable functions on[-1,1]in L_(∞)[-1,1]and weighted spaces L_(p,ω)[-1,1],1≤p<∞withωa continuous integrable weight ... This paper investigates the optimal Lagrange interpolation of a class F∞of infinitely differentiable functions on[-1,1]in L_(∞)[-1,1]and weighted spaces L_(p,ω)[-1,1],1≤p<∞withωa continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation polynomials based on the zeros of polynomials with the leading coefficient 1 of the least deviation from zero in L_(p,ω)[-1,1]are optimal for 1≤p<∞.We also give the optimal Lagrange interpolation nodes when the endpoints are included in the nodes. 展开更多
关键词 worst case setting optimal Lagrange interpolation infinitely differentiable function space
原文传递
Sample Numbers and Optimal Lagrange Interpolation of Sobolev Spaces W_(1)^(r) 被引量:5
3
作者 Guiqiao XU Zehong LIU Hui WANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2021年第4期519-528,共10页
This paper investigates the optimal recovery of Sobolev spaces W_(1)^(r)[-1,1],r∈N in the space L_(1)[-1,1].They obtain the values of the sampling numbers of W_(1)^(r)[-1,1]in L_(1)[-1,1]and show that the Lagrange in... This paper investigates the optimal recovery of Sobolev spaces W_(1)^(r)[-1,1],r∈N in the space L_(1)[-1,1].They obtain the values of the sampling numbers of W_(1)^(r)[-1,1]in L_(1)[-1,1]and show that the Lagrange interpolation algorithms based on the extreme points of Chebyshev polynomials are optimal algorithms.Meanwhile,they prove that the extreme points of Chebyshev polynomials are optimal Lagrange interpolation nodes. 展开更多
关键词 worst case setting Sampling number Optimal Lagrange interpolation nodes Sobolev space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部