Research has been conducted to reduce resource consumption in 3D medical image segmentation for diverse resource-constrained environments.However,decreasing the number of parameters to enhance computational efficiency...Research has been conducted to reduce resource consumption in 3D medical image segmentation for diverse resource-constrained environments.However,decreasing the number of parameters to enhance computational efficiency can also lead to performance degradation.Moreover,these methods face challenges in balancing global and local features,increasing the risk of errors in multi-scale segmentation.This issue is particularly pronounced when segmenting small and complex structures within the human body.To address this problem,we propose a multi-stage hierarchical architecture composed of a detector and a segmentor.The detector extracts regions of interest(ROIs)in a 3D image,while the segmentor performs segmentation in the extracted ROI.Removing unnecessary areas in the detector allows the segmentation to be performed on a more compact input.The segmentor is designed with multiple stages,where each stage utilizes different input sizes.It implements a stage-skippingmechanism that deactivates certain stages using the initial input size.This approach minimizes unnecessary computations on segmenting the essential regions to reduce computational overhead.The proposed framework preserves segmentation performance while reducing resource consumption,enabling segmentation even in resource-constrained environments.展开更多
Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance b...Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains challenging.Methods This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and VR.Therefore,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image graph.Using this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of views.The rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image graph.The detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in real-time.In addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light intensities.Results Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,respectively.While achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering approaches.Conclusions Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR environments.Nevertheless,the handling of morphing artifacts in the parallax image regions remains a topic for future research.展开更多
Deep learning networks are increasingly exploited in the field of neuronal soma segmentation.However,annotating dataset is also an expensive and time-consuming task.Unsupervised domain adaptation is an effective metho...Deep learning networks are increasingly exploited in the field of neuronal soma segmentation.However,annotating dataset is also an expensive and time-consuming task.Unsupervised domain adaptation is an effective method to mitigate the problem,which is able to learn an adaptive segmentation model by transferring knowledge from a rich-labeled source domain.In this paper,we propose a multi-level distribution alignment-based unsupervised domain adaptation network(MDA-Net)for segmentation of 3D neuronal soma images.Distribution alignment is performed in both feature space and output space.In the feature space,features from different scales are adaptively fused to enhance the feature extraction capability for small target somata and con-strained to be domain invariant by adversarial adaptation strategy.In the output space,local discrepancy maps that can reveal the spatial structures of somata are constructed on the predicted segmentation results.Then thedistribution alignment is performed on the local discrepancies maps across domains to obtain a superior discrepancy map in the target domain,achieving refined segmentation performance of neuronal somata.Additionally,after a period of distribution align-ment procedure,a portion of target samples with high confident pseudo-labels are selected as training data,which assist in learning a more adaptive segmentation network.We verified the superiority of the proposed algorithm by comparing several domain adaptation networks on two 3D mouse brain neuronal somata datasets and one macaque brain neuronal soma dataset.展开更多
This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are ob...This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are obtained.Pore structures are segmented by the U-shaped network(U-Net)neural network integrated with the Canny edge detection operator,ensuring accurate pore delineation and edge extraction.The trained U-Net achieves 98.55%accuracy.The 2D data are superimposed and processed into 3D point clouds,enabling reconstruction of the pore structure and aluminum skeleton.Analysis of pore 01 shows the cross-sectional area initially increases,and then decreases with milling depth,with a uniform point distribution of 40 per layer.The reconstructed model exhibits a porosity of 77.5%,with section overlap rates between the 2D pore segmentation and the reconstructed model exceeding 96%,confirming high fidelity.Equivalent sphere diameters decrease with size,averaging 1.95 mm.Compression simulations reveal that the stress-strain curve of the 3D reconstruction model of aluminum foam exhibits fluctuations,and the stresses in the reconstruction model concentrate on thin cell walls,leading to localized deformations.This method accurately restores the aluminum foam’s complex internal structure,improving reconstruction preci-sion and simulation reliability.The approach offers a cost-efficient,high-precision technique for optimizing material performance in engineering applications.展开更多
Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised m...Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.展开更多
Agromyzid leafminers cause significant economic losses in both vegetable and horticultural crops,and precise assessments of pesticide needs must be based on the extent of leaf damage.Traditionally,surveyors estimate t...Agromyzid leafminers cause significant economic losses in both vegetable and horticultural crops,and precise assessments of pesticide needs must be based on the extent of leaf damage.Traditionally,surveyors estimate the damage by visually comparing the proportion of damaged to intact leaf area,a method that lacks objectivity,precision,and reliable data traceability.To address these issues,an advanced survey system that combines augmented reality(AR)glasses with a camera and an artificial intelligence(AI)algorithm was developed in this study to objectively and accurately assess leafminer damage in the feld.By wearing AR glasses equipped with a voice-controlled camera,surveyors can easily flatten damaged leaves by hand and capture images for analysis.This method can provide a precise and reliable diagnosis of leafminer damage levels,which in turn supports the implementation of scientifically grounded and targeted pest management strategies.To calculate the leafminer damage level,the DeepLab-Leafminer model was proposed to precisely segment the leafminer-damaged regions and the intact leaf region.The integration of an edge-aware module and a Canny loss function into the DeepLabv3+model enhanced the DeepLab-Leafminer model's capability to accurately segment the edges of leafminer-damaged regions,which often exhibit irregular shapes.Compared with state-of-the-art segmentation models,the DeepLabLeafminer model achieved superior segmentation performance with an Intersection over Union(IoU)of 81.23%and an F1score of 87.92%on leafminer-damaged leaves.The test results revealed a 92.38%diagnosis accuracy of leafminer damage levels based on the DeepLab-Leafminer model.A mobile application and a web platform were developed to assist surveyors in displaying the diagnostic results of leafminer damage levels.This system provides surveyors with an advanced,user-friendly,and accurate tool for assessing agromyzid leafminer damage in agricultural felds using wearable AR glasses and an AI model.This method can also be utilized to automatically diagnose pest and disease damage levels in other crops based on leaf images.展开更多
To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected...To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.展开更多
Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pa...Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.展开更多
We present the Fourier lightfield multiview stereoscope(FiLM-Scope).This imaging device combines concepts from Fourier lightfield microscopy and multiview stereo imaging to capture high-resolution 3D videos over large...We present the Fourier lightfield multiview stereoscope(FiLM-Scope).This imaging device combines concepts from Fourier lightfield microscopy and multiview stereo imaging to capture high-resolution 3D videos over large fields of view.The FiLM-Scope optical hardware consists of a multicamera array,with 48 individual microcameras,placed behind a high-throughput primary lens.This allows the FiLM-Scope to simultaneously capture 48 unique 12.8 megapixel images of a 28×37 mm field-of-view,from unique angular perspectives over a 21 deg×29 deg range,with down to 22μm lateral resolution.We also describe a self-supervised algorithm to reconstruct 3D height maps from these images.Our approach demonstrates height accuracy down to 11μm.To showcase the utility of our system,we perform tool tracking over the surface of an ex vivo rat skull and visualize the 3D deformation in stretching human skin,with videos captured at up to 100 frames per second.The FiLM-Scope has the potential to improve 3D visualization in a range of microsurgical settings.展开更多
This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering a...This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering applications, such as infrastructure monitoring and heritage preservation. Using a high-resolution UAV with a 20 MP (MegaPixels) sensor, four images of a brick wall test field were captured and processed in Agisoft Metashape, with resolutions compared against Leica T2002 theodolite measurements (1.0 mm accuracy). Advanced statistical methods (ANOVA (analysis of variance), Tukey tests, Monte Carlo simulations) and ground control points validated the results. Accuracy improved from 25 mm at 50 PPI to 5 mm at 150 PPI (p < 0.01), plateauing at 4 mm beyond 200 PPI, while 150 PPI reduced processing time by 62% compared to 300 PPI. Unlike prior studies, this research uniquely isolates resolution effects in a controlled civil engineering context, offering a novel 150 PPI threshold that balances precision and efficiency. This threshold supports Saudi Vision 2030’s smart infrastructure goals for megaprojects like NEOM, providing a scalable framework for global applications. Future research should leverage deep learning to optimize resolutions in dynamic environments.展开更多
Electron cyclotron emission imaging(ECEI)is a critical diagnostic tool for measuring two-dimensional electron temperature fluctuations.The optical system,a key component of the ECEI diagnostic,determines the spatial r...Electron cyclotron emission imaging(ECEI)is a critical diagnostic tool for measuring two-dimensional electron temperature fluctuations.The optical system,a key component of the ECEI diagnostic,determines the spatial resolution,field of view,and imaging performance of electron temperature fluctuations.In this study,comprehensive laboratory tests and characterizations of the optical system,including the local oscillator(LO)coupling optics and the radio frequency(RF)receiving optics,were conducted to ensure optimal performance during plasma discharge experiments.Laboratory testing of the LO optics revealed that the light intensity at the edge channels reaches 36%of that at the central channels;however,both are sufficient to effectively drive the down-converted mixers.The RF optics focus covers the entire non-harmonic overlap region,corresponding to a normalized plasma minor radius range of ρ=−0.2 to 0.9,and offers three zoom modes:narrow,medium,and wide,with poloidal resolutions of 1.5 cm,1.8 cm,and 2.1 cm,respectively.The characterizations for these zoom modes align well with the optical design specifications.It was observed that the imaging surfaces of all zoom modes are exceptionally flat,indicating high-quality ECEI measurements with excellent spatial resolution.The LO lens,focusing lens,and zoom adjustment lens are capable of remote independent control,which enhances the operational flexibility of the system.Preliminary analyses conducted with the ECEI system successfully captured the two-dimensional structure and spatiotemporal evolution of phenomena such as sawtooth crashes,demonstrating the robust capability of the system to provide valuable insights into plasma dynamics.展开更多
Nano-computed tomography(Nano-CT)is an emerging,high-resolution imaging technique.However,due to their low-light properties,tabletop Nano-CT has to be scanned under long exposure conditions,which the scanning process ...Nano-computed tomography(Nano-CT)is an emerging,high-resolution imaging technique.However,due to their low-light properties,tabletop Nano-CT has to be scanned under long exposure conditions,which the scanning process is time-consuming.For 3D reconstruction data,this paper proposed a lightweight 3D noise reduction method for desktop-level Nano-CT called AAD-ResNet(Axial Attention DeNoise ResNet).The network is framed by theU-net structure.The encoder and decoder are incorporated with the proposed 3D axial attention mechanism and residual dense block.Each layer of the residual dense block can directly access the features of the previous layer,which reduces the redundancy of parameters and improves the efficiency of network training.The 3D axial attention mechanism enhances the correlation between 3D information in the training process and captures the long-distance dependence.It can improve the noise reduction effect and avoid the loss of image structure details.Experimental results show that the network can effectively improve the image quality of a 0.1-s exposure scan to a level close to a 3-s exposure,significantly shortening the sample scanning time.展开更多
Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the thr...Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.展开更多
In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext en...In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.展开更多
3D reconstruction plays an increasingly important role in modern photogrammetric systems.Conventional satellite or aerial-based remote sensing(RS)platforms can provide the necessary data sources for the 3D reconstruct...3D reconstruction plays an increasingly important role in modern photogrammetric systems.Conventional satellite or aerial-based remote sensing(RS)platforms can provide the necessary data sources for the 3D reconstruction of large-scale landforms and cities.Even with low-altitude Unmanned Aerial Vehicles(UAVs),3D reconstruction in complicated situations,such as urban canyons and indoor scenes,is challenging due to frequent tracking failures between camera frames and high data collection costs.Recently,spherical images have been extensively used due to the capability of recording surrounding environments from one image.In contrast to perspective images with limited Field of View(FOV),spherical images can cover the whole scene with full horizontal and vertical FOV and facilitate camera tracking and data acquisition in these complex scenes.With the rapid evolution and extensive use of professional and consumer-grade spherical cameras,spherical images show great potential for the 3D modeling of urban and indoor scenes.Classical 3D reconstruction pipelines,however,cannot be directly used for spherical images.Besides,there exist few software packages that are designed for the 3D reconstruction from spherical images.As a result,this research provides a thorough survey of the state-of-the-art for 3D reconstruction from spherical images in terms of data acquisition,feature detection and matching,image orientation,and dense matching as well as presenting promising applications and discussing potential prospects.We anticipate that this study offers insightful clues to direct future research.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
目的探讨T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨损伤中的诊断价值。方法对26例关节软骨损伤患者行T_2 star mapping、T_1 images和3D DESS扫描,并将T_1 images、T_2 star mapping与3D DESS图像融合,评价患者股骨...目的探讨T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨损伤中的诊断价值。方法对26例关节软骨损伤患者行T_2 star mapping、T_1 images和3D DESS扫描,并将T_1 images、T_2 star mapping与3D DESS图像融合,评价患者股骨、胫骨、髌骨关节软骨损伤程度并与关节镜结果对比,计算融合伪彩图诊断软骨损伤的特异性、敏感性及与关节镜诊断结果一致性。结果 T_1 images-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为92.8%、93.0%、0.769,T_2 star mapping-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为91.4%、94.2%、0.787。结论 T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨早期损伤评价上优于关节镜。展开更多
A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D po...A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D points can be easily obtained when capturing original 3-D images. The iterative least-mean-squared (LMS) algorithm is applied to optimizing adaptively the transformation matrix parameters. These can effectively improve the registration performance and hurry up the matching process. Experimental results show that it can reach a good subjective impression on aligned 3-D images. Although the algorithm focuses primarily on the human head model, it can also be used for other objects with small modifications.展开更多
文摘Research has been conducted to reduce resource consumption in 3D medical image segmentation for diverse resource-constrained environments.However,decreasing the number of parameters to enhance computational efficiency can also lead to performance degradation.Moreover,these methods face challenges in balancing global and local features,increasing the risk of errors in multi-scale segmentation.This issue is particularly pronounced when segmenting small and complex structures within the human body.To address this problem,we propose a multi-stage hierarchical architecture composed of a detector and a segmentor.The detector extracts regions of interest(ROIs)in a 3D image,while the segmentor performs segmentation in the extracted ROI.Removing unnecessary areas in the detector allows the segmentation to be performed on a more compact input.The segmentor is designed with multiple stages,where each stage utilizes different input sizes.It implements a stage-skippingmechanism that deactivates certain stages using the initial input size.This approach minimizes unnecessary computations on segmenting the essential regions to reduce computational overhead.The proposed framework preserves segmentation performance while reducing resource consumption,enabling segmentation even in resource-constrained environments.
基金Supported by the Bavarian Academic Forum(BayWISS),as a part of the joint academic partnership digitalization program.
文摘Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains challenging.Methods This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and VR.Therefore,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image graph.Using this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of views.The rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image graph.The detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in real-time.In addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light intensities.Results Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,respectively.While achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering approaches.Conclusions Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR environments.Nevertheless,the handling of morphing artifacts in the parallax image regions remains a topic for future research.
基金supported by the Fund of Key Laboratory of Biomedical Engineering of Hainan Province(No.BME20240001)the STI2030-Major Projects(No.2021ZD0200104)the National Natural Science Foundations of China under Grant 61771437.
文摘Deep learning networks are increasingly exploited in the field of neuronal soma segmentation.However,annotating dataset is also an expensive and time-consuming task.Unsupervised domain adaptation is an effective method to mitigate the problem,which is able to learn an adaptive segmentation model by transferring knowledge from a rich-labeled source domain.In this paper,we propose a multi-level distribution alignment-based unsupervised domain adaptation network(MDA-Net)for segmentation of 3D neuronal soma images.Distribution alignment is performed in both feature space and output space.In the feature space,features from different scales are adaptively fused to enhance the feature extraction capability for small target somata and con-strained to be domain invariant by adversarial adaptation strategy.In the output space,local discrepancy maps that can reveal the spatial structures of somata are constructed on the predicted segmentation results.Then thedistribution alignment is performed on the local discrepancies maps across domains to obtain a superior discrepancy map in the target domain,achieving refined segmentation performance of neuronal somata.Additionally,after a period of distribution align-ment procedure,a portion of target samples with high confident pseudo-labels are selected as training data,which assist in learning a more adaptive segmentation network.We verified the superiority of the proposed algorithm by comparing several domain adaptation networks on two 3D mouse brain neuronal somata datasets and one macaque brain neuronal soma dataset.
基金supported by the Key Research and DevelopmentPlan in Shanxi Province of China(No.201803D421045)the Natural Science Foundation of Shanxi Province(No.2021-0302-123104)。
文摘This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are obtained.Pore structures are segmented by the U-shaped network(U-Net)neural network integrated with the Canny edge detection operator,ensuring accurate pore delineation and edge extraction.The trained U-Net achieves 98.55%accuracy.The 2D data are superimposed and processed into 3D point clouds,enabling reconstruction of the pore structure and aluminum skeleton.Analysis of pore 01 shows the cross-sectional area initially increases,and then decreases with milling depth,with a uniform point distribution of 40 per layer.The reconstructed model exhibits a porosity of 77.5%,with section overlap rates between the 2D pore segmentation and the reconstructed model exceeding 96%,confirming high fidelity.Equivalent sphere diameters decrease with size,averaging 1.95 mm.Compression simulations reveal that the stress-strain curve of the 3D reconstruction model of aluminum foam exhibits fluctuations,and the stresses in the reconstruction model concentrate on thin cell walls,leading to localized deformations.This method accurately restores the aluminum foam’s complex internal structure,improving reconstruction preci-sion and simulation reliability.The approach offers a cost-efficient,high-precision technique for optimizing material performance in engineering applications.
基金Princess Nourah Bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R826),Princess Nourah Bint Abdulrahman University,Riyadh,Saudi ArabiaNorthern Border University,Saudi Arabia,for supporting this work through project number(NBU-CRP-2025-2933).
文摘Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.
基金supported by the National Key R&D Program of China(2021YFC2600400 and 2023YFC2605200)the National Key Research Program of China(2021YFD1401100)the“San Nong Jiu Fang”Sciences and Technologies Cooperation Project of Zhejiang Province,China(2024SNJF010)。
文摘Agromyzid leafminers cause significant economic losses in both vegetable and horticultural crops,and precise assessments of pesticide needs must be based on the extent of leaf damage.Traditionally,surveyors estimate the damage by visually comparing the proportion of damaged to intact leaf area,a method that lacks objectivity,precision,and reliable data traceability.To address these issues,an advanced survey system that combines augmented reality(AR)glasses with a camera and an artificial intelligence(AI)algorithm was developed in this study to objectively and accurately assess leafminer damage in the feld.By wearing AR glasses equipped with a voice-controlled camera,surveyors can easily flatten damaged leaves by hand and capture images for analysis.This method can provide a precise and reliable diagnosis of leafminer damage levels,which in turn supports the implementation of scientifically grounded and targeted pest management strategies.To calculate the leafminer damage level,the DeepLab-Leafminer model was proposed to precisely segment the leafminer-damaged regions and the intact leaf region.The integration of an edge-aware module and a Canny loss function into the DeepLabv3+model enhanced the DeepLab-Leafminer model's capability to accurately segment the edges of leafminer-damaged regions,which often exhibit irregular shapes.Compared with state-of-the-art segmentation models,the DeepLabLeafminer model achieved superior segmentation performance with an Intersection over Union(IoU)of 81.23%and an F1score of 87.92%on leafminer-damaged leaves.The test results revealed a 92.38%diagnosis accuracy of leafminer damage levels based on the DeepLab-Leafminer model.A mobile application and a web platform were developed to assist surveyors in displaying the diagnostic results of leafminer damage levels.This system provides surveyors with an advanced,user-friendly,and accurate tool for assessing agromyzid leafminer damage in agricultural felds using wearable AR glasses and an AI model.This method can also be utilized to automatically diagnose pest and disease damage levels in other crops based on leaf images.
文摘To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.
基金supported by National Key Research and Development Program of China(2022YFB2804603,2022YFB2804605)National Natural Science Foundation of China(U21B2033)+4 种基金Fundamental Research Funds forthe Central Universities(2023102001,2024202002)National Key Laborato-ry of Shock Wave and Detonation Physics(JCKYS2024212111)China Post-doctoral Science Fund(2023T160318)Open Research Fund of JiangsuKey Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_0695,SJCX25_0188)。
文摘Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.
基金supported by the National Cancer Institute(NCI)of the National Institutes of Health(Grant No.R44CA250877)the Office of Research Infrastructure Programs(ORIP),Office of the Director,National Institutes of Health,and the National Institute of Environmental Health Sciences(NIEHS)of the National Institutes of Health(Grant No.R44OD024879)+2 种基金the National Institute of Biomedical Imaging and Bioengineering(NIBIB)of the National Institutes of Health(Grant No.R43EB030979)the National Science Foundation(Grant Nos.2036439 and 2238845)the Duke Coulter Translational Part-nership Award,the Fitzpatrick Institute at the Duke University.
文摘We present the Fourier lightfield multiview stereoscope(FiLM-Scope).This imaging device combines concepts from Fourier lightfield microscopy and multiview stereo imaging to capture high-resolution 3D videos over large fields of view.The FiLM-Scope optical hardware consists of a multicamera array,with 48 individual microcameras,placed behind a high-throughput primary lens.This allows the FiLM-Scope to simultaneously capture 48 unique 12.8 megapixel images of a 28×37 mm field-of-view,from unique angular perspectives over a 21 deg×29 deg range,with down to 22μm lateral resolution.We also describe a self-supervised algorithm to reconstruct 3D height maps from these images.Our approach demonstrates height accuracy down to 11μm.To showcase the utility of our system,we perform tool tracking over the surface of an ex vivo rat skull and visualize the 3D deformation in stretching human skin,with videos captured at up to 100 frames per second.The FiLM-Scope has the potential to improve 3D visualization in a range of microsurgical settings.
文摘This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering applications, such as infrastructure monitoring and heritage preservation. Using a high-resolution UAV with a 20 MP (MegaPixels) sensor, four images of a brick wall test field were captured and processed in Agisoft Metashape, with resolutions compared against Leica T2002 theodolite measurements (1.0 mm accuracy). Advanced statistical methods (ANOVA (analysis of variance), Tukey tests, Monte Carlo simulations) and ground control points validated the results. Accuracy improved from 25 mm at 50 PPI to 5 mm at 150 PPI (p < 0.01), plateauing at 4 mm beyond 200 PPI, while 150 PPI reduced processing time by 62% compared to 300 PPI. Unlike prior studies, this research uniquely isolates resolution effects in a controlled civil engineering context, offering a novel 150 PPI threshold that balances precision and efficiency. This threshold supports Saudi Vision 2030’s smart infrastructure goals for megaprojects like NEOM, providing a scalable framework for global applications. Future research should leverage deep learning to optimize resolutions in dynamic environments.
基金partly supported by the National MCF Energy R&D Program of China(No.2022YFE03060003)partly by the Chinese National Fusion Project for ITER(No.2024YFE03190000)+2 种基金partly by National Natural Science Foundation of China(No.12405254)partly by the Innovation Program of Southwestern Institute of Physics(No.202301XWCX001-02)partly by Sichuan Science and Technology Program(No.2023ZYD0014).
文摘Electron cyclotron emission imaging(ECEI)is a critical diagnostic tool for measuring two-dimensional electron temperature fluctuations.The optical system,a key component of the ECEI diagnostic,determines the spatial resolution,field of view,and imaging performance of electron temperature fluctuations.In this study,comprehensive laboratory tests and characterizations of the optical system,including the local oscillator(LO)coupling optics and the radio frequency(RF)receiving optics,were conducted to ensure optimal performance during plasma discharge experiments.Laboratory testing of the LO optics revealed that the light intensity at the edge channels reaches 36%of that at the central channels;however,both are sufficient to effectively drive the down-converted mixers.The RF optics focus covers the entire non-harmonic overlap region,corresponding to a normalized plasma minor radius range of ρ=−0.2 to 0.9,and offers three zoom modes:narrow,medium,and wide,with poloidal resolutions of 1.5 cm,1.8 cm,and 2.1 cm,respectively.The characterizations for these zoom modes align well with the optical design specifications.It was observed that the imaging surfaces of all zoom modes are exceptionally flat,indicating high-quality ECEI measurements with excellent spatial resolution.The LO lens,focusing lens,and zoom adjustment lens are capable of remote independent control,which enhances the operational flexibility of the system.Preliminary analyses conducted with the ECEI system successfully captured the two-dimensional structure and spatiotemporal evolution of phenomena such as sawtooth crashes,demonstrating the robust capability of the system to provide valuable insights into plasma dynamics.
基金supported by the National Natural Science Foundation of China(62201618).
文摘Nano-computed tomography(Nano-CT)is an emerging,high-resolution imaging technique.However,due to their low-light properties,tabletop Nano-CT has to be scanned under long exposure conditions,which the scanning process is time-consuming.For 3D reconstruction data,this paper proposed a lightweight 3D noise reduction method for desktop-level Nano-CT called AAD-ResNet(Axial Attention DeNoise ResNet).The network is framed by theU-net structure.The encoder and decoder are incorporated with the proposed 3D axial attention mechanism and residual dense block.Each layer of the residual dense block can directly access the features of the previous layer,which reduces the redundancy of parameters and improves the efficiency of network training.The 3D axial attention mechanism enhances the correlation between 3D information in the training process and captures the long-distance dependence.It can improve the noise reduction effect and avoid the loss of image structure details.Experimental results show that the network can effectively improve the image quality of a 0.1-s exposure scan to a level close to a 3-s exposure,significantly shortening the sample scanning time.
基金Supported by the Key R&D Projects in Shaanxi Province(2022JBGS3-08)。
文摘Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.
文摘In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.
基金funded by the National Natural Science Foundation of China[Grant No.42371442]the Hubei Provincial Natural Science Foundation of China[Grant No.2023AFB568]+1 种基金the Hong Kong Scholars Program[Grant No.2021-114]the Open Research fund from the Hubei Luojia Laboratory[Grand No.230100013].
文摘3D reconstruction plays an increasingly important role in modern photogrammetric systems.Conventional satellite or aerial-based remote sensing(RS)platforms can provide the necessary data sources for the 3D reconstruction of large-scale landforms and cities.Even with low-altitude Unmanned Aerial Vehicles(UAVs),3D reconstruction in complicated situations,such as urban canyons and indoor scenes,is challenging due to frequent tracking failures between camera frames and high data collection costs.Recently,spherical images have been extensively used due to the capability of recording surrounding environments from one image.In contrast to perspective images with limited Field of View(FOV),spherical images can cover the whole scene with full horizontal and vertical FOV and facilitate camera tracking and data acquisition in these complex scenes.With the rapid evolution and extensive use of professional and consumer-grade spherical cameras,spherical images show great potential for the 3D modeling of urban and indoor scenes.Classical 3D reconstruction pipelines,however,cannot be directly used for spherical images.Besides,there exist few software packages that are designed for the 3D reconstruction from spherical images.As a result,this research provides a thorough survey of the state-of-the-art for 3D reconstruction from spherical images in terms of data acquisition,feature detection and matching,image orientation,and dense matching as well as presenting promising applications and discussing potential prospects.We anticipate that this study offers insightful clues to direct future research.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.
文摘目的探讨T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨损伤中的诊断价值。方法对26例关节软骨损伤患者行T_2 star mapping、T_1 images和3D DESS扫描,并将T_1 images、T_2 star mapping与3D DESS图像融合,评价患者股骨、胫骨、髌骨关节软骨损伤程度并与关节镜结果对比,计算融合伪彩图诊断软骨损伤的特异性、敏感性及与关节镜诊断结果一致性。结果 T_1 images-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为92.8%、93.0%、0.769,T_2 star mapping-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为91.4%、94.2%、0.787。结论 T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨早期损伤评价上优于关节镜。
文摘A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D points can be easily obtained when capturing original 3-D images. The iterative least-mean-squared (LMS) algorithm is applied to optimizing adaptively the transformation matrix parameters. These can effectively improve the registration performance and hurry up the matching process. Experimental results show that it can reach a good subjective impression on aligned 3-D images. Although the algorithm focuses primarily on the human head model, it can also be used for other objects with small modifications.