期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
基于LDA-Word2vec的冷链物流政策的央地协同量化分析
1
作者 甘卫华 凌耀琛 +1 位作者 吴素浓 熊奥诗 《兰州交通大学学报》 2025年第4期9-20,共12页
自2008年以来,为推动冷链物流健康快速发展,国家及各省市出台了一系列冷链物流政策,这些政策的效果直接影响各地冷链物流的投资热度和运营质量。基于政策工具理论,以中央和地方(下文简称“央地”)出台的冷链物流政策作为研究对象,引入LD... 自2008年以来,为推动冷链物流健康快速发展,国家及各省市出台了一系列冷链物流政策,这些政策的效果直接影响各地冷链物流的投资热度和运营质量。基于政策工具理论,以中央和地方(下文简称“央地”)出台的冷链物流政策作为研究对象,引入LDA主题模型和Word2vec词嵌入算法,进行政策文本的主题归纳分析、地域性差异分析、时序差异分析和央地协同性分析。研究结果表明:1) 2008-2023年研究期内,冷链物流政策主要聚焦“冷链物流行业的标准化”、“专项支持资金打造农产品冷链物流体系”、“多策并举落地冷链物流项目”、“构建绿色高效冷链供应链新模式”等四个主题;2)研究期内,冷链物流规范性政策文本具有时序阶段性特征,可分为萌芽期、增长期和稳健期,且各阶段主题强度不同,保证冷链物流的均衡发展;3)冷链物流规范性政策文本具有区域多样性,各地区对冷链侧重点存在差异,因地制宜制定冷链物流政策;4)华东城市群的冷链物流政策的央地协同性高于其他地区,且政策主题较为丰富,不仅响应中央政策要求,也适应各地区发展。 展开更多
关键词 冷链物流 政策协同 LDA主题模型 word2vec词嵌入算法
在线阅读 下载PDF
基于LDA-Word2vec的人工智能技术主题演化与热点主题识别
2
作者 王向前 高润凤 李慧宗 《九江学院学报(自然科学版)》 2025年第2期19-31,共13页
为识别人工智能关键技术,深入研究人工智能技术发展态势,有助于国家和企业及时把握人工智能发展动向,本文以人工智能领域中2009—2023年的专利文献为基础,融合运用LDA模型和Word2vec词向量技术,从主题强度和内容双重维度系统考察技术主... 为识别人工智能关键技术,深入研究人工智能技术发展态势,有助于国家和企业及时把握人工智能发展动向,本文以人工智能领域中2009—2023年的专利文献为基础,融合运用LDA模型和Word2vec词向量技术,从主题强度和内容双重维度系统考察技术主题的动态演变过程,同时构建主题热度、新颖度、影响力指标识别人工智能阶段性的热点主题。研究结果表明:①结合LDA主题建模能力和Word2vec语义处理能力能够有效提升技术主题识别精度,直观呈现人工智能领域细粒度技术主题的演化规律与特征;②人工智能领域的技术主题主要分为核心算法与技术基础、感知与交互技术、自然语言与语义理解、数据处理与安全、智能应用与自动化5大类范畴,且主题之间的关联和互动日益紧密;③通过对设计的指标进行综合评估,可以较好识别2009—2014年、2015—2019年和2020—2023年3个不同阶段的热点技术主题。 展开更多
关键词 人工智能 LDA模型 主题识别 word2vec 主题演化 热点技术主题
在线阅读 下载PDF
结合LDA与Word2vec的文本语义增强方法 被引量:28
3
作者 唐焕玲 卫红敏 +2 位作者 王育林 朱辉 窦全胜 《计算机工程与应用》 CSCD 北大核心 2022年第13期135-145,共11页
文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布... 文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布,计算单词与其上下文词的主题相似度,作为主题语义信息融入到词向量中,代替one-hot向量输入至Sem2vec模型,在最大化对数似然目标函数约束下,训练Sem2vec模型的最优参数,最终输出增强的语义词向量表示,并进一步得到文本的语义增强表示。在不同数据集上的实验结果表明,相比其他经典模型,Sem2vec模型的语义词向量之间的语义相似度计算更为准确。另外,根据Sem2vec模型得到的文本语义向量,在多种文本分类算法上的分类结果,较其他经典模型可以提升0.58%~3.5%,同时也提升了时间性能。 展开更多
关键词 LDA主题模型 word2vec模型 语义词向量 语义相似度 文本分类
在线阅读 下载PDF
基于word2vec和LDA的文本主题 被引量:7
4
作者 徐守坤 周佳 +1 位作者 李宁 石林 《计算机工程与设计》 北大核心 2018年第9期2764-2769,共6页
将word2vec和LDA算法相结合,对文本主题进行提取研究。通过已有的分词工具实现文本分词,提取文本中的词汇;对语料库依据LDA主题模型进行建模,提取主题相关词汇作为初始主题词集;依据word2vec模型提取与初始主题词集语义相似的词汇,将初... 将word2vec和LDA算法相结合,对文本主题进行提取研究。通过已有的分词工具实现文本分词,提取文本中的词汇;对语料库依据LDA主题模型进行建模,提取主题相关词汇作为初始主题词集;依据word2vec模型提取与初始主题词集语义相似的词汇,将初始主题词汇之间的相似度和向量邻接关系按照权重不同重新分配,改进Gibbs抽样,对LDA进行改进,提高主题挖掘的准确性和稳定性。实验结果表明,当训练语料分布合理时,经过LDA和word2vec的有效结合,主题词抽取效果有所提高,验证了该方法的可行性。 展开更多
关键词 自然语言处理 LDA模型 主题挖掘 word2vec模型 GIBBS抽样
在线阅读 下载PDF
基于LDA和Word2Vec模型的学位论文评阅意见主题挖掘与分析 被引量:7
5
作者 王孟 苏进城 陈志德 《福建师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期41-51,共11页
选取某高校部分硕士学位论文评阅意见为研究对象,使用自然语言处理和机器学习技术进行自动化的硕士学位论文评阅意见主题挖掘与分析。首先,采用LDA(latent dirichlet allocation)模型对评阅数据进行主题建模,提取文本中的潜在主题,并将... 选取某高校部分硕士学位论文评阅意见为研究对象,使用自然语言处理和机器学习技术进行自动化的硕士学位论文评阅意见主题挖掘与分析。首先,采用LDA(latent dirichlet allocation)模型对评阅数据进行主题建模,提取文本中的潜在主题,并将评阅意见转化为主题分布向量;其次,结合Word2Vec模型将评阅意见的关键词转化为向量表达;最后,采用TextRank方法提取关键词,以揭示评阅专家的关注核心主题。实验结果表明,所提方法能为高校管理人员提供切实有效的分析工具,有助于他们更好地分析总结评阅意见,同时也为硕士研究生撰写高质量学位论文提供有益借鉴。 展开更多
关键词 硕士学位论文 自然语言处理 LDA模型 word2vec模型 TextRank方法
在线阅读 下载PDF
融合Word2vec与TextRank的关键词抽取研究 被引量:69
6
作者 宁建飞 刘降珍 《现代图书情报技术》 CSSCI 2016年第6期20-27,共8页
【目的】通过融合单个文档内部结构信息和文档整体的词向量关系进行关键词抽取。【方法】利用Word2vec将文档集中所有词汇进行向量表征,并且通过词向量计算词汇之间的相似度,进而对Text Rank算法进行改进,将候选关键词的权重按照词汇之... 【目的】通过融合单个文档内部结构信息和文档整体的词向量关系进行关键词抽取。【方法】利用Word2vec将文档集中所有词汇进行向量表征,并且通过词向量计算词汇之间的相似度,进而对Text Rank算法进行改进,将候选关键词的权重按照词汇之间的相似度和邻接关系进行非均匀分配,并构建对应的概率转移矩阵用于词汇图模型的迭代计算以及关键词抽取。【结果】实现Word2vec与Text Rank的有效融合,且当训练文档集词汇分布合理时,关键词抽取效果较明显。【局限】需要进行成本较高的文档集训练,获取词向量以及词关系矩阵。【结论】文档集中的词关系有助于修正单文档内部的词关系,提升单文档的关键词抽取准确性。 展开更多
关键词 抽取 word2vec TextRank 图模型 词向量
原文传递
word2vec-ACV:OOV语境含义的词向量生成模型 被引量:9
7
作者 王永贵 郑泽 李玥 《计算机应用研究》 CSCD 北大核心 2019年第6期1623-1628,共6页
针对word2vec模型生成的词向量缺乏语境的多义性以及无法创建集外词(OOV)词向量的问题,引入相似信息与word2vec模型相结合,提出word2vec-ACV模型。该模型首先基于连续词袋(CBOW)和Hierarchical softmax的word2vec模型训练出词向量矩阵... 针对word2vec模型生成的词向量缺乏语境的多义性以及无法创建集外词(OOV)词向量的问题,引入相似信息与word2vec模型相结合,提出word2vec-ACV模型。该模型首先基于连续词袋(CBOW)和Hierarchical softmax的word2vec模型训练出词向量矩阵即权重矩阵;然后将共现矩阵进行归一化处理得到平均上下文词向量,再将词向量组成平均上下文词向量矩阵;最后将平均上下文词向量矩阵与权重矩阵相乘得到词向量矩阵。为了能同时解决集外词及多义性问题,将平均上下文词向量分为全局平均上下文词向量(global ACV)和局部平均上下文词向量(local ACV)两种,并对两者取权值组成新的平均上下文词向量矩阵,并将word2vec-ACV模型和word2vec模型分别进行类比任务实验和命名实体识别任务实验。实验结果表明,word2vec-ACV模型同时解决了语境多义性以及创建集外词词向量的问题,降低了时间消耗,提升了词向量表达的准确性和对海量词汇的处理能力。 展开更多
关键词 word2vec模型 词向量 共现矩阵 平均上下文词向量
在线阅读 下载PDF
基于Word2Vec和LDA主题模型的中国省级五年规划“文化政策”文本研究 被引量:3
8
作者 高娜 东梅 《网络安全与数据治理》 2024年第7期47-55,共9页
运用Word2Vec和LDA相结合的主题模型分析技术,对我国31个省份三个时期五年规划文本中文化政策部分进行主题识别,从时间和空间两个维度进行“文化政策”主题挖掘和演化分析。研究发现,“文化政策”主题在发展趋势、重点转移、政策导向、... 运用Word2Vec和LDA相结合的主题模型分析技术,对我国31个省份三个时期五年规划文本中文化政策部分进行主题识别,从时间和空间两个维度进行“文化政策”主题挖掘和演化分析。研究发现,“文化政策”主题在发展趋势、重点转移、政策导向、技术应用等方面随时间推移呈现不同演化趋势;四大区域受经济发展水平、文化资源禀赋、政策导向影响,在企业角色强调程度、地区特色旅游发展以及国家级项目和竞争力方面存在地域差异。 展开更多
关键词 LDA主题模型 word2vec 五年规划 文化政策 文本分析
在线阅读 下载PDF
Word2vec的工作原理及应用探究 被引量:104
9
作者 周练 《科技情报开发与经济》 2015年第2期145-148,共4页
研究了Word2vec的工作原理及应用,明确了统计语言模型的关键问题,分析了词向量的特点,并对神经网络语言模型、Log_Linear模型和Log_Bilinear模型的基本原理进行了探讨,对Word2vec词向量训练框架的工作原理进行了详细分析,推导出了训练... 研究了Word2vec的工作原理及应用,明确了统计语言模型的关键问题,分析了词向量的特点,并对神经网络语言模型、Log_Linear模型和Log_Bilinear模型的基本原理进行了探讨,对Word2vec词向量训练框架的工作原理进行了详细分析,推导出了训练模型的目标函数,介绍了Word2vec工程的主要文件和训练参数,并将Word2vec应用于中文词向量的训练。 展开更多
关键词 word2vec 词向量 统计语言模型
在线阅读 下载PDF
基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型 被引量:43
10
作者 王根生 黄学坚 《小型微型计算机系统》 CSCD 北大核心 2019年第5期1120-1126,共7页
针对传统机器学习文本分类算法语义特征表达弱、文本表示维度高、词序丢失、矩阵稀疏等问题,提出基于Word2vec、改进型TF-IDF和卷积神经网络三者相结合的文本分类模型(CTMWT):首先通过Word2vec模型训练得出样本中所有的词向量;然后提出... 针对传统机器学习文本分类算法语义特征表达弱、文本表示维度高、词序丢失、矩阵稀疏等问题,提出基于Word2vec、改进型TF-IDF和卷积神经网络三者相结合的文本分类模型(CTMWT):首先通过Word2vec模型训练得出样本中所有的词向量;然后提出基于类频方差改进型TF-IDF算法,分析每个词向量在文本中的权重,构建基于词向量和权重的文本向量表示;最后借助卷积神经网络从局部到全局相关性特征的学习能力,对该大量文本向量进行深度学习.试验结果表明三者结合的文本分类模型不仅能实现文本的准确分类,并且相比传统的机器学习文本分类算法具有更好的分类效果. 展开更多
关键词 word2vec 改进型TF-IDF算法 卷积神经网络 文本分类 CTMWT
在线阅读 下载PDF
基于Huffman-LDA和Weight-Word2vec的文本表示模型研究 被引量:4
11
作者 黄春雨 胡迪 +1 位作者 邱宁佳 孙爽滋 《长春理工大学学报(自然科学版)》 2020年第1期89-96,132,共9页
LDA是对主题到文档的全局结构建模,但其特征中缺少文档内部的局部词之间的关系,只能获得稀疏特征。Word2vec是一种基于上下文预测目标词的词嵌入模型,然而,基于这种方法只能以局部信息表示文档特征,缺乏全局信息。LDA和Word2vec的文本... LDA是对主题到文档的全局结构建模,但其特征中缺少文档内部的局部词之间的关系,只能获得稀疏特征。Word2vec是一种基于上下文预测目标词的词嵌入模型,然而,基于这种方法只能以局部信息表示文档特征,缺乏全局信息。LDA和Word2vec的文本表示模型是基于主题向量和文档向量计算新的特征表示文本,但直接计算所得的稀疏主题特征与基于词向量的文档特征的距离,缺乏特征的一致性。本文提出了Huffman-LDA和Weight-Word2vec的文本表示模型,首先,使用LDA模型得到主题向量后构建主题哈夫曼树,再运用梯度上升方法更新主题向量,新的主题向量包含不同主题词之间的关系,求得的特征不再具有稀疏性;然后,使用LDA主题向量与主题矩阵中词的主题特性计算词权重更新Word2vec的词向量,使得词向量包含主题词之间的关系进而表示文档向量;最后,通过主题向量和文档向量的欧式距离得到具有强分类特征的文本表示。实验结果表明,该方法可获得更强的文本表示特征,有效提高文档分类精度。 展开更多
关键词 主题模型 词嵌入 文本表示 Huffman-LDA Weight-word2vec
在线阅读 下载PDF
基于Word2vec和多分类器的影评情感分类方法 被引量:2
12
作者 王学贺 赵华 《宁夏大学学报(自然科学版)》 CAS 2019年第2期141-144,共4页
针对影评数据的情感分析,提出基于Word2vec和多分类器的情感分类方法.首先在对评论数据进行预处理的基础上,训练Word2vec模型,将词表示为词向量;其次结合随机森林和朴素贝叶斯多项式模型完成影评数据的情感分类;最后在Kaggle竞赛公开的... 针对影评数据的情感分析,提出基于Word2vec和多分类器的情感分类方法.首先在对评论数据进行预处理的基础上,训练Word2vec模型,将词表示为词向量;其次结合随机森林和朴素贝叶斯多项式模型完成影评数据的情感分类;最后在Kaggle竞赛公开的影评数据集上进行实验.结果表明,Word2vec可有效捕捉词的语义,显著提高情感分类算法的性能. 展开更多
关键词 word2vec 情感分类 随机森林 朴素贝叶斯多项式模型
在线阅读 下载PDF
基于Word2Vec和LDA主题模型的Web服务聚类方法 被引量:12
13
作者 肖巧翔 曹步清 +2 位作者 张祥平 刘建勋 李晏新闻 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第12期2979-2985,共7页
为高效地发现满足用户需求的Web服务,针对Web服务的描述文本较短、缺乏足够有效信息的问题,提出一种基于Word2Vec和LDA主题模型的Web服务聚类方法。该方法首先将Wikipedia语料库作为扩充源,使用word2vec对Web服务描述文档内容进行扩充,... 为高效地发现满足用户需求的Web服务,针对Web服务的描述文本较短、缺乏足够有效信息的问题,提出一种基于Word2Vec和LDA主题模型的Web服务聚类方法。该方法首先将Wikipedia语料库作为扩充源,使用word2vec对Web服务描述文档内容进行扩充,再将扩充后的描述文档利用主题模型进行特征建模,将短文本主题建模转化为长文本主题建模,更准确地实现服务内容主题表达,最后根据文档的主题分布矩阵寻找相似的服务并完成聚类,使用从ProgrammableWeb收集的真实数据进行实验。研究结果表明:本文方法与TFIDF-K,LDA,WT-LDA和LDA-K方法相比,F分别提高419.74%,20.11%,15.60%和27.80%,利用扩充后的Web服务的描述文档进行聚类的方法能够有效提高Web服务聚类的效果。 展开更多
关键词 WEB服务 word2vec LDA主题模型 K-MEANS算法 Web服务聚类
在线阅读 下载PDF
基于word2vec的配电网恶意控制指令检测算法 被引量:6
14
作者 郑佩祥 陈彬 +1 位作者 卢昕 徐文渊 《计算机工程》 CAS CSCD 北大核心 2019年第4期119-123,129,共6页
现有的配电网恶意控制指令检测方法基于电力系统运行规则,但规则维护困难、规则匹配耗时较长。根据配电网上行测量信息和下行控制指令之间存在的上下文一致性关系,提出基于word2vec的恶意控制指令检测算法。在配电网仿真平台模拟各类工... 现有的配电网恶意控制指令检测方法基于电力系统运行规则,但规则维护困难、规则匹配耗时较长。根据配电网上行测量信息和下行控制指令之间存在的上下文一致性关系,提出基于word2vec的恶意控制指令检测算法。在配电网仿真平台模拟各类工况并获取标注数据集,结果表明,该算法能够取得100%的精确度和87.2%的召回率,具有较高的检测精度。 展开更多
关键词 配电网 恶意控制指令 上下文 word2vec模型 异常检测
在线阅读 下载PDF
基于CiteSpace、Word2vec和LDA主题模型的国内技术接受模型领域研究现状和演化分析 被引量:2
15
作者 冯靖 章胜平 +1 位作者 宋志刚 肖镇江 《情报探索》 2023年第11期125-134,共10页
[目的/意义]旨在梳理国内技术接受模型领域研究成果,总结国内学术界在技术接受模型领域研究热点,同时对研究主题的演化进行分析,为技术接受模型后续研究提供借鉴和参考。[方法/过程]采用CiteSpace、Word2vec和LDA主题模型,首先对在知网... [目的/意义]旨在梳理国内技术接受模型领域研究成果,总结国内学术界在技术接受模型领域研究热点,同时对研究主题的演化进行分析,为技术接受模型后续研究提供借鉴和参考。[方法/过程]采用CiteSpace、Word2vec和LDA主题模型,首先对在知网上检索的文章进行清理与信息采集,导出相应的Refworks文件。然后借助于软件CiteSpace,从作者、机构、关键词等方面,对技术接受模型研究进行可视化分析,再通过Word2vec和LDA主题模型对文献摘要进行分析,总结得出技术接受模型研究的热点主题及主题演化。[结果/结论]研究发现,技术接受模型依然是解决新技术的采纳和持续使用的重要方法,但要考虑多因素影响,增强其扩展性和适应性,重视用户体验和情感因素。 展开更多
关键词 技术接受模型 CITESPACE word2vec LDA主题模型 演化分析
在线阅读 下载PDF
基于word2vec与LDA主题模型的技术相似性可视化研究 被引量:39
16
作者 席笑文 郭颖 +1 位作者 宋欣娜 王瑾 《情报学报》 CSSCI CSCD 北大核心 2021年第9期974-983,共10页
技术相似性是企业、组织或国家进行技术情报分析的重要内容,能为其识别潜在竞争关系和合作伙伴提供准确、有效的信息支持。本文针对传统LDA(latent Dirichlet allocation)主题模型忽略专利文本上下文间语义关联的问题,提出了基于word2ve... 技术相似性是企业、组织或国家进行技术情报分析的重要内容,能为其识别潜在竞争关系和合作伙伴提供准确、有效的信息支持。本文针对传统LDA(latent Dirichlet allocation)主题模型忽略专利文本上下文间语义关联的问题,提出了基于word2vec和LDA主题模型的技术相似性可视化研究方法。首先,基于word2vec模型学习特征词在专利文档集合中的上下文语境信息;其次,基于LDA主题模型构建专利权人-专利-技术主题三层概率分布,并将两者融合生成“词粒度”层面的主题向量、专利文档向量及专利权人向量;再次,利用向量相似性指标计算专利权人间的语义相似度,并在此基础上构建能够直观反映专利权人与技术主题关系的二模网络;最后,以NEDD(nano enabled drug delivery)领域为例进行实证研究,证明了该模型在技术相似性测度分析中具有较好的效果。 展开更多
关键词 word2vec LDA主题模型 技术相似性测度
在线阅读 下载PDF
基于Word2Vec的SCI地址字段数据清洗方法研究 被引量:16
17
作者 孙源 《情报杂志》 CSSCI 北大核心 2019年第2期195-200,共6页
[目的/意义]旨在设计一种有效针对SCI地址字段的数据清洗方案,将Word2Vec词向量模型引入到SCI地址字段的清洗过程中,利用地址字段中上下文的信息,识别SCI地址字段中机构名称的不同写法,最终建立"机构名称映射表",达到数据清... [目的/意义]旨在设计一种有效针对SCI地址字段的数据清洗方案,将Word2Vec词向量模型引入到SCI地址字段的清洗过程中,利用地址字段中上下文的信息,识别SCI地址字段中机构名称的不同写法,最终建立"机构名称映射表",达到数据清洗的目的。[方法/过程]首先,对SCI地址字段的数据进行预处理,按照规律将地址字段的信息构建成专有名词。然后,引入Word2Vec模型训练,利用训练好的模型结合余弦相似度找出与待清洗机构名相似的拼写形式。最后,建立"机构名称映射表"完成清洗。[结果/结论]通过实证分析发现,第一,在相同阈值下,该方法针对机构的识别准确要比传统字符匹配的方法要高。第二,在机构名变体与缩写的识别能力上有较好的表现。第三,该方法的运算速度是传统字符匹配算法的近40倍。Word2Vec词向量模型在数据清洗中有一定应用价值,能够根据SCI地址字段的上下文信息,清洗出指定机构名称的形似、变体和缩写机构名,从而达到数据规范化的目的。 展开更多
关键词 数据清洗 word2vec 词向量模型 SCI地址字段
在线阅读 下载PDF
基于LDA-Word2vec的图书情报领域机器学习研究主题演化与热点主题识别 被引量:38
18
作者 胡泽文 韩雅蓉 王梦雅 《现代情报》 CSSCI 北大核心 2024年第4期154-167,共14页
[目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以... [目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以图书情报领域中2011—2022年Web of Science数据库中的机器学习研究论文为例,融合LDA和Word2vec方法进行主题建模和主题演化分析,引入主题强度、主题影响力、主题关注度与主题新颖性指标识别热点主题与新兴热点主题。[结果/结论]研究结果表明,(1)Word2vec语义处理能力与LDA主题演化能力的结合能够更加准确地识别研究主题,直观展示研究主题的分阶段演化规律;(2)图书情报领域的机器学习研究主题主要分为自然语言处理与文本分析、数据挖掘与分析、信息与知识服务三大类范畴。各类主题之间的关联性较强,且具有主题关联演化特征;(3)设计的主题强度、主题影响力和主题关注度指标及综合指标能够较好地识别出2011—2014年、2015—2018年和2019—2022年3个不同周期阶段的热点主题。 展开更多
关键词 机器学习 LDA模型 word2vec 主题演化 热点主题 主题影响力 主题关注度
在线阅读 下载PDF
基于Word2Vec和TextRank的时政类新闻关键词抽取方法研究 被引量:13
19
作者 刘奇飞 沈炜域 《情报探索》 2018年第6期22-27,共6页
[目的/意义]旨在为时政类新闻关键词抽取提供参考。[方法/过程]基于融合Word2Vec和TextRank算法,在研究时政类新闻文本特征基础上,利用政治重点词库修订文本词语的初始权重,结合上下文关系确定词语之间的连接关系,并基于Word2Vec模型构... [目的/意义]旨在为时政类新闻关键词抽取提供参考。[方法/过程]基于融合Word2Vec和TextRank算法,在研究时政类新闻文本特征基础上,利用政治重点词库修订文本词语的初始权重,结合上下文关系确定词语之间的连接关系,并基于Word2Vec模型构建概率转移矩阵,提出改进的Word2Vec和TextRank算法。[结果/结论 ]运用改进的Word2Vec和TextRank算法对时政类新闻关键词进行抽取,其准确率、召回率和F值均优于传统TextRank算法及普通的融合Word2Vec和TextRank算法,抽取效果更好。 展开更多
关键词 时政新闻 关键词抽取 TextRank算法 word2vec模型 词图
在线阅读 下载PDF
融合word2vec和注意力机制的图像描述模型 被引量:7
20
作者 邓珍荣 张宝军 +1 位作者 蒋周琴 黄文明 《计算机科学》 CSCD 北大核心 2019年第4期268-273,共6页
针对当前图像描述任务中,生成描述图像的语句整体质量不高的问题,提出一种融合word2vec和注意力机制的图像描述模型。在编码阶段,应用word2vec模型描述文本向量化操作,以增强词与词的相关性;应用VGGNet19网络提取图像特征,并在图像特征... 针对当前图像描述任务中,生成描述图像的语句整体质量不高的问题,提出一种融合word2vec和注意力机制的图像描述模型。在编码阶段,应用word2vec模型描述文本向量化操作,以增强词与词的相关性;应用VGGNet19网络提取图像特征,并在图像特征中融合注意力机制,使得模型在每一个时间节点上生成单词时能够突出相对应的图像特征。在解码阶段,应用GRU网络作为图像描述任务的语言生成模型,用以提高模型的训练效率和生成句子的质量。在Flickr8k和Flickr30k两个公共数据集上的实验结果表明,在同一训练环境下,GRU模型的训练时长比LSTM模型节省了1/3的时间,在BLEU和METEOR评价标准上,所提模型的性能得到了显著提升。 展开更多
关键词 图像描述 word2vec 注意力机制 GRU模型
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部