期刊文献+
共找到866篇文章
< 1 2 44 >
每页显示 20 50 100
Improve Neural Machine Translation by Building Word Vector with Part of Speech 被引量:3
1
作者 Jinyingming Zhang Jin Liu Xinyue Lin 《Journal on Artificial Intelligence》 2020年第2期79-88,共10页
Neural Machine Translation(NMT)based system is an important technology for translation applications.However,there is plenty of rooms for the improvement of NMT.In the process of NMT,traditional word vector cannot dist... Neural Machine Translation(NMT)based system is an important technology for translation applications.However,there is plenty of rooms for the improvement of NMT.In the process of NMT,traditional word vector cannot distinguish the same words under different parts of speech(POS).Aiming to alleviate this problem,this paper proposed a new word vector training method based on POS feature.It can efficiently improve the quality of translation by adding POS feature to the training process of word vectors.In the experiments,we conducted extensive experiments to evaluate our methods.The experimental result shows that the proposed method is beneficial to improve the quality of translation from English into Chinese. 展开更多
关键词 Machine translation parts of speech word vector
在线阅读 下载PDF
Towards privacy-preserving and efficient word vector learning for lightweight IoT devices
2
作者 Nan Jia Shaojing Fu +2 位作者 Guangquan Xu Kai Huang Ming Xu 《Digital Communications and Networks》 SCIE CSCD 2024年第4期895-903,共9页
Nowadays,Internet of Things(IoT)is widely deployed and brings great opportunities to change people's daily life.To realize more effective human-computer interaction in the IoT applications,the Question Answering(Q... Nowadays,Internet of Things(IoT)is widely deployed and brings great opportunities to change people's daily life.To realize more effective human-computer interaction in the IoT applications,the Question Answering(QA)systems implanted in the IoT services are supposed to improve the ability to understand natural language.Therefore,the distributed representation of words,which contains more semantic or syntactic information,has been playing a more and more important role in the QA systems.However,learning high-quality distributed word vectors requires lots of storage and computing resources,hence it cannot be deployed on the resource-constrained IoT devices.It is a good choice to outsource the data and computation to the cloud servers.Nevertheless,it could cause privacy risks to directly upload private data to the untrusted cloud.Therefore,realizing the word vector learning process over untrusted cloud servers without privacy leakage is an urgent and challenging task.In this paper,we present a novel efficient word vector learning scheme over encrypted data.We first design a series of arithmetic computation protocols.Then we use two non-colluding cloud servers to implement high-quality word vectors learning over encrypted data.The proposed scheme allows us to perform training word vectors on the remote cloud servers while protecting privacy.Security analysis and experiments over real data sets demonstrate that our scheme is more secure and efficient than existing privacy-preserving word vector learning schemes. 展开更多
关键词 PRIVACY-PRESERVING word vector learning Secret sharing Internet of things
在线阅读 下载PDF
Paragraph Vector Representation Based on Word to Vector and CNN Learning 被引量:5
3
作者 Zeyu Xiong Qiangqiang Shen +1 位作者 Yijie Wang Chenyang Zhu 《Computers, Materials & Continua》 SCIE EI 2018年第5期213-227,共15页
Document processing in natural language includes retrieval,sentiment analysis,theme extraction,etc.Classical methods for handling these tasks are based on models of probability,semantics and networks for machine learn... Document processing in natural language includes retrieval,sentiment analysis,theme extraction,etc.Classical methods for handling these tasks are based on models of probability,semantics and networks for machine learning.The probability model is loss of semantic information in essential,and it influences the processing accuracy.Machine learning approaches include supervised,unsupervised,and semi-supervised approaches,labeled corpora is necessary for semantics model and supervised learning.The method for achieving a reliably labeled corpus is done manually,it is costly and time-consuming because people have to read each document and annotate the label of each document.Recently,the continuous CBOW model is efficient for learning high-quality distributed vector representations,and it can capture a large number of precise syntactic and semantic word relationships,this model can be easily extended to learn paragraph vector,but it is not precise.Towards these problems,this paper is devoted to developing a new model for learning paragraph vector,we combine the CBOW model and CNNs to establish a new deep learning model.Experimental results show that paragraph vector generated by the new model is better than the paragraph vector generated by CBOW model in semantic relativeness and accuracy. 展开更多
关键词 Distributed word vector distributed paragraph vector CNNS CBOW deep learning.
在线阅读 下载PDF
基于Word2vector的文本特征化表示方法 被引量:22
4
作者 周顺先 蒋励 +2 位作者 林霜巧 龚德良 王鲁达 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2018年第2期272-279,共8页
针对基于词语统计的特征化表示无法有效提取文本的词义特征的问题,提出一种基于上下文关系的文本特征化表示方法。该方法利用Word2vector提取词义特征,获得词向量;再对词向量进行"最优适应度划分"的聚类,并根据聚类结果将词... 针对基于词语统计的特征化表示无法有效提取文本的词义特征的问题,提出一种基于上下文关系的文本特征化表示方法。该方法利用Word2vector提取词义特征,获得词向量;再对词向量进行"最优适应度划分"的聚类,并根据聚类结果将词语替代表示为聚类质心;根据质心及其所代表的词语的词频,构成词向量聚类质心频率模型(semantic frequency-inverse document frequency,SF-IDF),用于特征化表示文本。在不依赖语义规则的情况下,分别以路透社文本集Reuter-21578、维基百科(extensible markup language,XML)数据为文本数据集,采用神经网络语言模型(neural network language model,NNLM)算法进行文本分类实验,并采用F1-measure标准进行样本分类的效果评估,词向量聚类质心频率模型SF-IDF(semantic frequency-inverse document frequency,SF-IDF)向量与现有技术中词频-逆向文件频率(term frequency-inverse document frequency,TF-IDF)向量的分类效果对比,与TF-IDF模型进行对比实验;在Reuter-21578数据集上平均准确率由原有的57.1%提高到63.3%,在Wikipedia XML数据集上平均准确率由原有的48.7%提高到59.2%。SF-IDF模型可适用于现行的基于特征向量的信息检索算法,且较TF-IDF模型有更高的文本相似性分析效率,可提升文本分类准确率。 展开更多
关键词 word2vector 上下文关系 特征化表示 文本分类
在线阅读 下载PDF
一种基于Word2Vector与编辑距离的句子相似度计算方法 被引量:4
5
作者 陆尹浩 《电脑知识与技术(过刊)》 2017年第2X期146-147,共2页
随着各种问答系统的流行与聊天机器人的火热,对句子相似性的比较和处理越来越成为各类类似系统的核心部分。因此,研究并设计出一种好的句子相似性比较方法变得越来越关键。该文基于一种深度学习模型Word2Vector并且结合编辑距离算法提... 随着各种问答系统的流行与聊天机器人的火热,对句子相似性的比较和处理越来越成为各类类似系统的核心部分。因此,研究并设计出一种好的句子相似性比较方法变得越来越关键。该文基于一种深度学习模型Word2Vector并且结合编辑距离算法提出了一种句子相似度计算方法,给出了具体的设计思路,并且通过实验验证了该方法的有效性,最后总结了该方法的优缺点。 展开更多
关键词 句子相似度计算 word2vector 编辑距离 Edit Distance
在线阅读 下载PDF
基于Word2vec的哈萨克文词向量化模型的实现
6
作者 吾塔嗯拜克·阿萨汗 亚森·艾则孜 阿依努尔·努尔太 《数字通信世界》 2025年第5期148-149,166,共3页
词向量嵌入技术是研究自然语言的重要一步,通过向量化,将自然语言数字化,使自然语言能够被计算机识别和进行相关处理计算。基于Word2vec实现哈萨克文向量化,对哈萨克语机器翻译、文本分类和识别等领域研究具有重要支撑意义。本文将开源... 词向量嵌入技术是研究自然语言的重要一步,通过向量化,将自然语言数字化,使自然语言能够被计算机识别和进行相关处理计算。基于Word2vec实现哈萨克文向量化,对哈萨克语机器翻译、文本分类和识别等领域研究具有重要支撑意义。本文将开源的科大讯飞哈萨克文语料数据集作为语料库,经过清洗、分词等步骤,用Word2vc实现向量化,将每一个哈萨克文词转换为一个独立的K位词向量,通过对词向量的计算,实现发现哈萨克文文本中包含的上下文语义规律、文本主题词提取、相似词计算等功能。 展开更多
关键词 哈萨克文 word2vec 词向量 相似度分析
在线阅读 下载PDF
结合LDA与Word2vec的文本语义增强方法 被引量:28
7
作者 唐焕玲 卫红敏 +2 位作者 王育林 朱辉 窦全胜 《计算机工程与应用》 CSCD 北大核心 2022年第13期135-145,共11页
文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布... 文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布,计算单词与其上下文词的主题相似度,作为主题语义信息融入到词向量中,代替one-hot向量输入至Sem2vec模型,在最大化对数似然目标函数约束下,训练Sem2vec模型的最优参数,最终输出增强的语义词向量表示,并进一步得到文本的语义增强表示。在不同数据集上的实验结果表明,相比其他经典模型,Sem2vec模型的语义词向量之间的语义相似度计算更为准确。另外,根据Sem2vec模型得到的文本语义向量,在多种文本分类算法上的分类结果,较其他经典模型可以提升0.58%~3.5%,同时也提升了时间性能。 展开更多
关键词 LDA主题模型 word2vec模型 语义词向量 语义相似度 文本分类
在线阅读 下载PDF
融入Attention机制改进Word2vec技术的水利水电工程专业词智能提取与分析方法 被引量:25
8
作者 李明超 田丹 +2 位作者 沈扬 Jonathan Shi 韩帅 《水利学报》 EI CSCD 北大核心 2020年第7期816-826,共11页
水利水电工程专业文本信息处理与分析以往主要依赖于人工交互,存在过程繁琐、效率低且易出错等问题。本文基于自然语言处理技术,引入Attention机制对Word2vec技术加以改进,提出了一种智能高效的水利水电工程专业词识别提取与分析方法。... 水利水电工程专业文本信息处理与分析以往主要依赖于人工交互,存在过程繁琐、效率低且易出错等问题。本文基于自然语言处理技术,引入Attention机制对Word2vec技术加以改进,提出了一种智能高效的水利水电工程专业词识别提取与分析方法。该方法通过组合Attention机制,改进Word2vec技术建立了专业词向量计算模型;根据所求词向量,计算词语间相似度,以词语间相似度为组合标准,组合提取水利水电工程专业词;进而结合已有的水利水电工程专业文本,验证所提取专业词的可信度,实现了水利水电工程专业词的自动提炼,构建了一套水利水电工程专业词智能识别提取与分析体系。该方法应用于实际某混凝土大坝长达229周的施工监理周报文本分析中,经过3轮识别计算与分析,获得了9034个水利水电工程专业词,准确率为87.58%,有效提升了水利水电工程专业文本信息提取分析的效率、准确率与智能化水平。 展开更多
关键词 水利水电工程 专业文本 自然语言处理 词向量 word2vec技术 Attention机制 智能提取
在线阅读 下载PDF
融合Word2vec与TextRank的关键词抽取研究 被引量:69
9
作者 宁建飞 刘降珍 《现代图书情报技术》 CSSCI 2016年第6期20-27,共8页
【目的】通过融合单个文档内部结构信息和文档整体的词向量关系进行关键词抽取。【方法】利用Word2vec将文档集中所有词汇进行向量表征,并且通过词向量计算词汇之间的相似度,进而对Text Rank算法进行改进,将候选关键词的权重按照词汇之... 【目的】通过融合单个文档内部结构信息和文档整体的词向量关系进行关键词抽取。【方法】利用Word2vec将文档集中所有词汇进行向量表征,并且通过词向量计算词汇之间的相似度,进而对Text Rank算法进行改进,将候选关键词的权重按照词汇之间的相似度和邻接关系进行非均匀分配,并构建对应的概率转移矩阵用于词汇图模型的迭代计算以及关键词抽取。【结果】实现Word2vec与Text Rank的有效融合,且当训练文档集词汇分布合理时,关键词抽取效果较明显。【局限】需要进行成本较高的文档集训练,获取词向量以及词关系矩阵。【结论】文档集中的词关系有助于修正单文档内部的词关系,提升单文档的关键词抽取准确性。 展开更多
关键词 抽取 word2vec TextRank 图模型 词向量
原文传递
基于SUMO和WordNet本体集成的文本分类模型研究 被引量:8
10
作者 胡泽文 王效岳 白如江 《现代图书情报技术》 CSSCI 北大核心 2011年第1期31-38,共8页
针对传统文本分类方法和目前语义分类方法中存在的问题,提出基于SUMO和W ordNet本体集成的文本分类模型,该模型利用W ordNet同义词集与SUMO本体概念之间的映射关系,将文档-词向量空间中的词条映射成本体中相应的概念,形成文档-概念向量... 针对传统文本分类方法和目前语义分类方法中存在的问题,提出基于SUMO和W ordNet本体集成的文本分类模型,该模型利用W ordNet同义词集与SUMO本体概念之间的映射关系,将文档-词向量空间中的词条映射成本体中相应的概念,形成文档-概念向量空间进行文本自动分类。实验表明,该方法能够极大降低向量空间维度,提高文本分类性能。 展开更多
关键词 SUMO本体 wordNET 本体集成 文本分类模型 词向量空间 概念向量空间
原文传递
利用word2vec对中文词进行聚类的研究 被引量:30
11
作者 郑文超 徐鹏 《软件》 2013年第12期160-162,共3页
文本聚类在数据挖掘和机器学习中发挥着重要的作用,该技术经过多年的发展,已产生了一系列的理论成果。本文在前人研究成果的基础上,探索了一种新的中文聚类方法。本文先提出了一种中文分词算法,用来将中文文本分割成独立的词语。再对处... 文本聚类在数据挖掘和机器学习中发挥着重要的作用,该技术经过多年的发展,已产生了一系列的理论成果。本文在前人研究成果的基础上,探索了一种新的中文聚类方法。本文先提出了一种中文分词算法,用来将中文文本分割成独立的词语。再对处理后的语料使用Word2Vec工具集,应用深度神经网络算法,转化为对应的词向量。最后,将词向量之间的余弦距离定义为词之间的相似度,通过使用K-means聚类算法将获取的词向量进行聚类,最终可以返回语料库中同输入词语语意最接近的词。本文从网络上抓取了2012年的网络新闻数据,应用上述方法进行了实验,取得了不错的实验效果。 展开更多
关键词 数据挖掘 聚类 分词 词向量 神经网络
在线阅读 下载PDF
WordNG-Vec:一种应用于CNN文本分类的词向量模型 被引量:6
12
作者 王勇 何养明 +2 位作者 邹辉 黎春 陈荟西 《小型微型计算机系统》 CSCD 北大核心 2019年第3期499-502,共4页
文本特征提取(文本输入表示)作为文本分类技术的要点,其构建质量直接影响着分类系统的分类效果.现在最流行的文本输入表示——词向量(Word Vector)虽然考虑了词的相似性但忽略了局部词序特征,在一些情况下造成文本语义上的缺失和歪曲.为... 文本特征提取(文本输入表示)作为文本分类技术的要点,其构建质量直接影响着分类系统的分类效果.现在最流行的文本输入表示——词向量(Word Vector)虽然考虑了词的相似性但忽略了局部词序特征,在一些情况下造成文本语义上的缺失和歪曲.为此,本文提出了一种结合N-Gram特征与Word2vec的词向量模型WordNG-Vec,其提取出的词向量(Word-NG向量),作为双通道卷积神经网络模型(DC-CNN)的输入.经过多组对比实验分析表明,在精确率(precision)和召回率(recall)和F1值三个评价指标下,本文提出的方法有效提高文本分类的效果. 展开更多
关键词 文本分类 词向量 DC-CNN N-Gram特征
在线阅读 下载PDF
基于Sword2vect的中文在线商品评价情感分析 被引量:7
13
作者 厍向阳 杨瑞丽 董立红 《西安科技大学学报》 CAS 北大核心 2020年第3期504-511,共8页
商品的在线评论情感分析已经成为一个热门的研究话题。为了更好地解决情感分析中词语的上下文信息和词语的情感信息缺失问题,提出了一种基于句子情感得分加权句向量的Sword2vect情感分析方法,对中文在线评价进行情感分析。首先用基于词... 商品的在线评论情感分析已经成为一个热门的研究话题。为了更好地解决情感分析中词语的上下文信息和词语的情感信息缺失问题,提出了一种基于句子情感得分加权句向量的Sword2vect情感分析方法,对中文在线评价进行情感分析。首先用基于词典的方法计算出评论句子的情感得分并对其进行预处理保证所有正向评论句子的情感得分为正,负向评论情感得分为负,用word2vect算法得到含有上下文信息评论的句子向量,然后用情感得分对句子向量进行加权得到情感句向量Sword2vect,用支持向量机算法对训练数据集进行训练得到模型,最后调用训练好的模型对测试数据集进行情感分析。采用基于情感得分加权的Sword2vect算法和word2vect词向量算法以及tf_idf特征词向量算法分别对京东手机在线评价以及谭松波酒店评价这2个数据集进行情感分析,从精确度、时间等方面进行比较。实验结果表明:基于情感得分加权的Sword2vect算法精确度较word2vect词向量算法精确度提升了10%~20%,相比于tf_idf特征词向量精度提升了20%~30%,Sword2vect算法的时间效率较其他2个算法也得到了较大的提升。 展开更多
关键词 情感分析 word2vect 支持向量机 情感词向量
在线阅读 下载PDF
一种基于Word2Vec的训练效果优化策略研究 被引量:20
14
作者 王飞 谭新 《计算机应用与软件》 北大核心 2018年第1期97-102,174,共7页
Word2Vec是谷歌在2013年开源的一款语言处理工具包,它能够在基于神经网络训练语言模型的同时将词表示成实数值向量,并根据向量空间余弦距离来寻找语义相似度高的词,训练效率较高。在应用Word2 Vec训练词向量的过程中,对其中可能影响Word... Word2Vec是谷歌在2013年开源的一款语言处理工具包,它能够在基于神经网络训练语言模型的同时将词表示成实数值向量,并根据向量空间余弦距离来寻找语义相似度高的词,训练效率较高。在应用Word2 Vec训练词向量的过程中,对其中可能影响Word2 Vec词向量训练的中文分词和算法选择环节进行试验,配合深入解析部分核心源代码,发现能使训练效果最优的策略,使得Word2Vec的性能获得一定的提升,为下一步的应用提供了更好的词向量。 展开更多
关键词 word2Vec 词向量 语义相似度 算法
在线阅读 下载PDF
基于统计语言模型改进的Word2Vec优化策略研究 被引量:14
15
作者 张克君 史泰猛 +1 位作者 李伟男 钱榕 《中文信息学报》 CSCD 北大核心 2019年第7期11-19,共9页
该文从训练词向量的语言模型入手,研究了经典skip-gram、CBOW语言模型训练出的词向量的优缺点,引入TFIDF文本关键词计算法,提出了一种基于关键词改进的语言模型。研究发现,经典skip-gram、CBOW语言模型只考虑到词本身与其上下文的联系,... 该文从训练词向量的语言模型入手,研究了经典skip-gram、CBOW语言模型训练出的词向量的优缺点,引入TFIDF文本关键词计算法,提出了一种基于关键词改进的语言模型。研究发现,经典skip-gram、CBOW语言模型只考虑到词本身与其上下文的联系,而改进的语言模型通过文本关键词建立了词本身与整个文本之间的联系,在词向量训练结果的查准率和相似度方面,改进模型训练出的词向量较skip-gram、CBOW语言模型有一个小幅度的提升。通过基于维基百科1.5GB中文语料的词向量训练实验对比后发现,使用CBOW-TFIDF模型训练出的词向量在相似词测试任务中结果最佳;把改进的词向量应用到情感倾向性分析任务中,正向评价的精确率和F1值分别提高了4.79%、4.92%,因此基于统计语言模型改进的词向量,对于情感倾向性分析等以词向量为基础的应用研究工作有较为重要的实践意义。 展开更多
关键词 词向量 统计语言模型 TFIDF 文本关键词 CBOW-TFIDF
在线阅读 下载PDF
word2vec-ACV:OOV语境含义的词向量生成模型 被引量:9
16
作者 王永贵 郑泽 李玥 《计算机应用研究》 CSCD 北大核心 2019年第6期1623-1628,共6页
针对word2vec模型生成的词向量缺乏语境的多义性以及无法创建集外词(OOV)词向量的问题,引入相似信息与word2vec模型相结合,提出word2vec-ACV模型。该模型首先基于连续词袋(CBOW)和Hierarchical softmax的word2vec模型训练出词向量矩阵... 针对word2vec模型生成的词向量缺乏语境的多义性以及无法创建集外词(OOV)词向量的问题,引入相似信息与word2vec模型相结合,提出word2vec-ACV模型。该模型首先基于连续词袋(CBOW)和Hierarchical softmax的word2vec模型训练出词向量矩阵即权重矩阵;然后将共现矩阵进行归一化处理得到平均上下文词向量,再将词向量组成平均上下文词向量矩阵;最后将平均上下文词向量矩阵与权重矩阵相乘得到词向量矩阵。为了能同时解决集外词及多义性问题,将平均上下文词向量分为全局平均上下文词向量(global ACV)和局部平均上下文词向量(local ACV)两种,并对两者取权值组成新的平均上下文词向量矩阵,并将word2vec-ACV模型和word2vec模型分别进行类比任务实验和命名实体识别任务实验。实验结果表明,word2vec-ACV模型同时解决了语境多义性以及创建集外词词向量的问题,降低了时间消耗,提升了词向量表达的准确性和对海量词汇的处理能力。 展开更多
关键词 word2vec模型 词向量 共现矩阵 平均上下文词向量
在线阅读 下载PDF
基于加权word2vec的微博情感分析 被引量:18
17
作者 李锐 张谦 刘嘉勇 《通信技术》 2017年第3期502-506,共5页
随着社交媒体的普及,微博情感分析受到了广大研究者的关注。为解决情感分析中词间语义关系缺失和词汇重要程度被忽略的问题,提出了一种基于加权词向量和支持向量机的情感分析方法,对微博的情感分析问题进行研究。首先用word2vec训练并... 随着社交媒体的普及,微博情感分析受到了广大研究者的关注。为解决情感分析中词间语义关系缺失和词汇重要程度被忽略的问题,提出了一种基于加权词向量和支持向量机的情感分析方法,对微博的情感分析问题进行研究。首先用word2vec训练并计算得到文档词向量;然后根据TFIDF算法计算文档中词汇的权重,对word2vec词向量进行加权;最后,使用SVM对情感数据进行训练和分类。在微博实验数据中,与已有方法相比,所提方法分类准确率和召回率都得到了提高。 展开更多
关键词 情感分析 word2vec 加权词向量 支持向量机
在线阅读 下载PDF
基于自然语言处理的Word2Vec词向量应用 被引量:12
18
作者 石凤贵 《黑河学院学报》 2020年第7期173-177,共5页
计算机要理解自然语言,首先需要理解词语的语义,要考虑词的同义、近义、词的上下文关系,数字化即转化为词向量,通过计算处理词向量来处理文本。阐述词向量及Word2Vec词模型的特点,Word2Vec是被广泛使用的词向量模型,同时基于《西游记》... 计算机要理解自然语言,首先需要理解词语的语义,要考虑词的同义、近义、词的上下文关系,数字化即转化为词向量,通过计算处理词向量来处理文本。阐述词向量及Word2Vec词模型的特点,Word2Vec是被广泛使用的词向量模型,同时基于《西游记》语料进行应用实现。 展开更多
关键词 自然语言处理 词向量 共现矩阵 word2Vec
在线阅读 下载PDF
融合深度特征的Sword2vect商品在线评价情感分析 被引量:1
19
作者 厍向阳 杨瑞丽 《计算机应用与软件》 北大核心 2020年第6期212-217,共6页
商品在线评论情感分析已经成为一个热门的研究话题。为了更好地解决情感分析中词语的上下文信息、深度信息和情感信息缺失问题,提出一种融合深度特征的Sword2vect情感分析方法。用情感得分加权word2vect词向量得到含有上下文和情感信息... 商品在线评论情感分析已经成为一个热门的研究话题。为了更好地解决情感分析中词语的上下文信息、深度信息和情感信息缺失问题,提出一种融合深度特征的Sword2vect情感分析方法。用情感得分加权word2vect词向量得到含有上下文和情感信息的Sword2vect;基于注意力的长短期记忆神经网络得到深度特征AttBilstm;融合深度特征的Sword2vect进行情感分析。在深度学习框架tensorflow进行实验并与已有的方法在准确率、召回率、F1等评价指标上进行比较,验证了该算法的有效性。 展开更多
关键词 情感分析 word2vect 支持向量机 情感词向量 长短期记忆神经网络
在线阅读 下载PDF
Word2vec的工作原理及应用探究 被引量:104
20
作者 周练 《科技情报开发与经济》 2015年第2期145-148,共4页
研究了Word2vec的工作原理及应用,明确了统计语言模型的关键问题,分析了词向量的特点,并对神经网络语言模型、Log_Linear模型和Log_Bilinear模型的基本原理进行了探讨,对Word2vec词向量训练框架的工作原理进行了详细分析,推导出了训练... 研究了Word2vec的工作原理及应用,明确了统计语言模型的关键问题,分析了词向量的特点,并对神经网络语言模型、Log_Linear模型和Log_Bilinear模型的基本原理进行了探讨,对Word2vec词向量训练框架的工作原理进行了详细分析,推导出了训练模型的目标函数,介绍了Word2vec工程的主要文件和训练参数,并将Word2vec应用于中文词向量的训练。 展开更多
关键词 word2vec 词向量 统计语言模型
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部