期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Small Sample Estimation in Dynamic Panel Data Models: A Simulation Study 被引量:1
1
作者 Lorelied.A. Santos Erniel B. Barrios 《Open Journal of Statistics》 2011年第2期58-73,共16页
We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (D... We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since their optimality was established in the context of asymptotic theory. We developed parametric bootstrap versions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods under small sample cases on the assumption that variances of the individual effects and the disturbances are of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples. 展开更多
关键词 Dynamic Panel Data Model within-groups ESTIMATOR First-Difference Generalized Method of MOMENTS ESTIMATOR PARAMETRIC BOOTSTRAP
暂未订购
Ranking all decision making units based on their elementary differences 被引量:1
2
作者 Yang Feng Liang Liang Bi Gongbing Ling Liuyi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期732-740,共9页
Traditional DEA-based ranking techniques have some pitfalls such as ignoring the inherent differences among decision making units (DMUs), or lacking a common weight-based ranking, etc. To overcome these obstacles, t... Traditional DEA-based ranking techniques have some pitfalls such as ignoring the inherent differences among decision making units (DMUs), or lacking a common weight-based ranking, etc. To overcome these obstacles, the paper first examines the possible differences among all DMUs such as the technical efficiency difference, the preference structure difference and the within-group position difference. Based upon the above differences this paper induces an integrated ranking measurement which helps to give a fair and full ranking for all DMUs under evaluation. Following the three types of differences, this approach behaves greatly elaborately, accurately and reasonably. Finally, the results from the Olympics achievement evaluation approve the acceptability of this approach. 展开更多
关键词 data envelopment analysis technical efficiency preference structure within-group position cluster analysis ranking.
在线阅读 下载PDF
Estimation of a Linear Model in Terms of Intra-Class Correlations of the Residual Error and the Regressors
3
作者 Juha Lappi 《Open Journal of Statistics》 2022年第2期188-199,共12页
Objectives: The objective is to analyze the interaction of the correlation structure and values of the regressor variables in the estimation of a linear model when there is a constant, possibly negative, intra-class c... Objectives: The objective is to analyze the interaction of the correlation structure and values of the regressor variables in the estimation of a linear model when there is a constant, possibly negative, intra-class correlation of residual errors and the group sizes are equal. Specifically: 1) How does the variance of the generalized least squares (GLS) estimator (GLSE) depend on the regressor values? 2) What is the bias in estimated variances when ordinary least squares (OLS) estimator is used? 3) In what cases are OLS and GLS equivalent. 4) How can the best linear unbiased estimator (BLUE) be constructed when the covariance matrix is singular? The purpose is to make general matrix results understandable. Results: The effects of the regressor values can be expressed in terms of the intra-class correlations of the regressors. If the intra-class correlation of residuals is large, then it is beneficial to have small intra-class correlations of the regressors, and vice versa. The algebraic presentation of GLS shows how the GLSE gives different weight to the between-group effects and the within-group effects, in what cases OLSE is equal to GLSE, and how BLUE can be constructed when the residual covariance matrix is singular. Different situations arise when the intra-class correlations of the regressors get their extreme values or intermediate values. The derivations lead to BLUE combining OLS and GLS weighting in an estimator, which can be obtained also using general matrix theory. It is indicated how the analysis can be generalized to non-equal group sizes. The analysis gives insight to models where between-group effects and within-group effects are used as separate regressors. 展开更多
关键词 Best Linear Unbiased Estimator Ordinary Least-Squares Generalized Least Squares Singular Correlation Matrix Between-Group Effects within-group Effects
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部