期刊文献+
共找到760篇文章
< 1 2 38 >
每页显示 20 50 100
Hierarchical detection and tracking for moving targets in underwater wireless sensor networks 被引量:1
1
作者 Yudong Li Hongcheng Zhuang +2 位作者 Long Xu Shengquan Li Haibo Lu 《Digital Communications and Networks》 2025年第2期556-562,共7页
It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sens... It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes. 展开更多
关键词 Underwater wireless sensor networks The degree of target change Mutual information PHEROMONE Adaptive period
在线阅读 下载PDF
Application Research of Wireless Sensor Networks and the Internet of Things 被引量:1
2
作者 Changjian Lv Rui Wang Man Zhao 《Journal of Electronic Research and Application》 2025年第4期283-289,共7页
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee... In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers. 展开更多
关键词 wireless sensor networks Internet of Things Key technologies Application fields
在线阅读 下载PDF
Mitigating Hotspot Problem Using Northern Goshawk Optimization Based Energy Aware Multi-Hop Communication for Wireless Sensor Networks
3
作者 S.Leones Sherwin Vimalraj J.Lydia 《China Communications》 2025年第2期283-298,共16页
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo... Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures. 展开更多
关键词 CLUSTERING energy efficiency metaheuristics multihop communication network lifetime wireless sensor networks
在线阅读 下载PDF
Application of Bagging Ensemble Model for Fault Detection in Wireless Sensor Networks
4
作者 Rahul Prasad Baghel R K 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期74-85,共12页
A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions su... A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions such as light intensity,air pressure,temperature,humidity,wind,etc.These sensors are generally deployed in harsh and hostile conditions;hence they suffer from different kinds of faults.However,identifying faults in WSN data remains a complex task,as existing fault detection methods,including centralized,distributed,and hybrid approaches,rely on the spatio⁃temporal correlation among sensor nodes.Moreover,existing techniques predominantly leverage classification⁃based machine learning methods to discern the fault state within WSN.In this paper,we propose a regression⁃based bagging method to detect the faults in the network.The proposed bagging method is consisted of GRU(Gated Recurrent Unit)and Prophet model.Bagging allows weak learners to combine efforts to outperform a strong learner,hence it is appropriate to use in WSN.The proposed bagging method was first trained at the base station,then they were deployed at each SN(Sensor Node).Most of the common faults in WSN,such as transient,intermittent and permanent faults,were considered.The validity of the proposed scheme was tested using a trusted online published dataset.Using experimental studies,compared to the latest state⁃of⁃the⁃art machine learning models,the effectiveness of the proposed model is shown for fault detection.Performance evaluation in terms of false positive rate,accuracy,and false alarm rate shows the efficiency of the proposed algorithm. 展开更多
关键词 fault detection GRU PROPHET deep learning wireless sensor networks
在线阅读 下载PDF
Sine-Polynomial Chaotic Map(SPCM):A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks
5
作者 David S.Bhatti Annas W.Malik +1 位作者 Haeung Choi Ki-Il Kim 《Computers, Materials & Continua》 2025年第10期2157-2177,共21页
Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a n... Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities. 展开更多
关键词 Chaos theory chaotic system image encryption CRYPTOGRAPHY wireless sensor networks(WSNs)
在线阅读 下载PDF
An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks
6
作者 Peng Zhou Wei Chen Bingyu Cao 《Computers, Materials & Continua》 2025年第9期5337-5360,共24页
Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as ... Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as inaccurate node clustering,low energy efficiency,and shortened network lifespan in practical deployments,which significantly limit their large-scale application.To address these issues,this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm(AC-ACO),aiming to optimize the energy utilization and system lifespan of WSNs.AC-ACO combines the path-planning capability of Ant Colony Optimization(ACO)with the dynamic characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and adaptability.By dynamically adjusting the pheromone evaporation factor and heuristic weights,efficient node clustering is achieved.Additionally,a chaotic mapping initialization strategy is employed to enhance population diversity and avoid premature convergence.To validate the algorithm’s performance,this paper compares AC-ACO with clustering methods such as Low-Energy Adaptive Clustering Hierarchy(LEACH),ACO,Particle Swarm Optimization(PSO),and Genetic Algorithm(GA).Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key metrics such as energy consumption optimization,network lifetime extension,and communication delay reduction,providing an efficient solution for improving energy efficiency and ensuring long-term stable operation of wireless sensor networks. 展开更多
关键词 Internet of Things wireless sensor networks ant colony optimization clustering algorithm energy efficiency
在线阅读 下载PDF
Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation
7
作者 Xiaogang Yuan Huan Pei Yanlin Wu 《Computers, Materials & Continua》 2025年第9期5555-5575,共21页
In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stabili... In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stability,data transmission reliability,and overall performance.To effectively address this issue and significantly improve intrusion detection speed,accuracy,and resistance to malicious attacks,this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation(TIDM-DTE).This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust,communication trust,and energy consumption trust by focusing on characteristics such as continuous packet loss and energy consumption changes.By dynamically predicting node trust values using the grey Markov model,the model accurately and sensitively reflects changes in node trust levels during attacks.Additionally,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)data noise monitoring technology is employed to quickly identify attacked nodes,while a trust recovery mechanism restores the trust of temporarily faulty nodes to reduce False Alarm Rate.Simulation results demonstrate that TIDM-DTE achieves high detection rates,fast detection speed,and low False Alarm Rate when identifying various network attacks,including selective forwarding attacks,Sybil attacks,switch attacks,and black hole attacks.TIDM-DTE significantly enhances network security,ensures secure and reliable data transmission,moderately improves network energy efficiency,reduces unnecessary energy consumption,and provides strong support for the stable operation of WSNs.Meanwhile,the research findings offer new ideas and methods for WSN security protection,possessing important theoretical significance and practical application value. 展开更多
关键词 wireless sensor networks intrusion detection dynamic trust evaluation data noise detection trust recovery mechanism
在线阅读 下载PDF
Efficient Cooperative Target Node Localization with Optimization Strategy Based on RSS for Wireless Sensor Networks
8
作者 Xinrong Zhang Bo Chang 《Computers, Materials & Continua》 2025年第3期5079-5095,共17页
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ... In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error. 展开更多
关键词 wireless sensor networks received signal strength(RSS) optimization algorithm cooperative localiza-tion weighted least squares
在线阅读 下载PDF
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
9
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
Reliability Service Oriented Efficient Embedding Method Towards Virtual Hybrid Wireless Sensor Networks
10
作者 Wu Dapeng Lai Wan +3 位作者 Sun Meiyu Yang Zhigang Zhang Puning Wang Ruyan 《China Communications》 2025年第11期161-175,共15页
Network virtualization is the development trend and inevitable requirement of hybrid wireless sensor networks(HWSNs).Low mapping efficiency and service interruption caused by mobility seriously affect the reliability ... Network virtualization is the development trend and inevitable requirement of hybrid wireless sensor networks(HWSNs).Low mapping efficiency and service interruption caused by mobility seriously affect the reliability of sensing tasks and ultimately affect the long-term revenue of the infrastructure providers.In response to these problems,this paper proposes an efficient virtual network embedding algorithm with a reliable service guarantee.Based on the topological attributes of nodes,a method for evaluating the physical network resource importance degree is proposed,and the nodes with rich resources are selected to improve embedding efficiency.Then,a method for evaluating the physical network reliability degree is proposed to predict the probability of mobile sensors providing uninterrupted services.The simulation results show that the proposed algorithm improves the acceptance rate of virtual sensor networks(VSN)embedding requests and the long-term revenue of the infrastructure providers. 展开更多
关键词 hybrid wireless sensor networks mobile sensor reliability service virtual network embedding
在线阅读 下载PDF
Home control system based on ZigBee wireless sensor networks 被引量:6
11
作者 丁飞 宋光明 +1 位作者 李建清 宋爱国 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期420-423,共4页
A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data ac... A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently. 展开更多
关键词 home control system ZIGBEE wireless sensor networks pocket PC LABVIEW
在线阅读 下载PDF
An efficient reliability evaluation method for industrial wireless sensor networks 被引量:4
12
作者 乐英高 李建清 +1 位作者 樊鹤红 秦钦 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期195-200,共6页
Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluati... Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluation method and a novel network function value representation method are proposed to evaluate the reliability of the IWSNs. First, the adjacency matrix method is used to characterize three typical topologies of WSNs including the mesh network, tree network and ribbon network. Secondly, the network function value method is used to evaluate the network connectivity, and the TEST-MC evaluation method is used to evaluate network reliability and availability. Finally, the variations in the reliability, connectivity and availability of these three topologies are presented. Simulation results show that the proposed method can quickly analyze the reliability of the networks containing typical WSN topologies, which provides an effective method for the comprehensive and accurate evaluation of the reliability of WSNs. 展开更多
关键词 wireless sensor networks topology structure reliability evaluation CONNECTIVITY AVAILABILITY
在线阅读 下载PDF
LOCALIZATION ALGORITHM USING DISTANCE AND ANGLE INFORMATION IN WIRELESS SENSOR NETWORKS 被引量:3
13
作者 诸燕平 黄大庆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第1期58-64,共7页
A localization algorithm using distance and angle information is proposed in wireless sensor networks. Assuming that node axial orientations are unknown, all angles are measured to calculate the angle differences betw... A localization algorithm using distance and angle information is proposed in wireless sensor networks. Assuming that node axial orientations are unknown, all angles are measured to calculate the angle differences between two nodes viewed by the third one. Then, localization problems are formulated as convex optimization ones and all geometric relationships among different nodes in the communication range are transformed into linear or quadratic constraints. If all measurements are accurate, the localization problem can be formulated as linear programming (LP). Otherwise, by incorporating auxiliary variables, it can be regarded as quadratic programming (QP). Simulations show the effectiveness of the proposed algorithm. 展开更多
关键词 linear programming quadratic programming wireless sensor networks angle of arrival
在线阅读 下载PDF
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
14
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
Dynamic Clustering Method for Underwater Wireless Sensor Networks based on Deep Reinforcement Learning
15
作者 Kohyar Bolvary Zadeh Dashtestani Reza Javidan Reza Akbari 《哈尔滨工程大学学报(英文版)》 2025年第4期864-876,共13页
Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of t... Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment. 展开更多
关键词 Underwater wireless sensor network CLUSTERING Cluster head selection Deep reinforcement learning
暂未订购
Comparison of Energy Harvesting Systems for Wireless Sensor Networks 被引量:27
16
作者 James M.Gilbert Farooq Balouchi 《International Journal of Automation and computing》 EI 2008年第4期334-347,共14页
Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over exte... Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring.Energy harvesting provides a potential solution to this problem in many applications.This paper reviews the characteristics and energy requirements of typical sensor network nodes,assesses a range of potential ambient energy sources,and outlines the characteristics of a wide range of energy conversion devices.It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density. 展开更多
关键词 Energy harvesting energy scavenging wireless sensor networks (WSNs) energy management
在线阅读 下载PDF
Physiological signal acquisition system based on wireless sensor networks 被引量:3
17
作者 邱文教 张永魁 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期73-77,共5页
Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the b... Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the biological electrical signal related to student attention and emotion states can be measured by electrocardiography signals. The bioelectrical signal is digitalized at a 200 Hz sampling rate and is transmitted by the ZigBee protocol. Simultaneously, the Bluetooth technology is also embedded in the nodes so as to meet the high sampling rate and the high-bandwidth transmission. The system can implement the monitoring tasks for 30 students, and the experimental results of using the system in the classroom are proposed. Finally, the applications of wireless sensor networks used in education is also discussed. 展开更多
关键词 wireless sensor network physiological signal EDUCATION
在线阅读 下载PDF
An Asynchronous Clustering and Mobile Data Gathering Schema Based on Timer Mechanism in Wireless Sensor Networks 被引量:8
18
作者 Jin Wang Yu Gao +2 位作者 Wei Liu Wenbing Wu Se-Jung Lim 《Computers, Materials & Continua》 SCIE EI 2019年第3期711-725,共15页
Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the... Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the Internet of Things(IoT).An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism(ACMDGTM)algorithm is proposed which would mitigate the problem of“hot spots”among sensors to enhance the lifetime of networks.The clustering process takes sensors’location and residual energy into consideration to elect suitable cluster heads.Furthermore,one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself.Related experimental results display that the presented method can avoid long distance communicate between sensor nodes.Furthermore,this algorithm reduces energy consumption effectively and improves package delivery rate. 展开更多
关键词 Internet of things wireless sensor networks CLUSTERING mobile data collection timer.
在线阅读 下载PDF
Coordinate-free k-coverage hole detection algorithm in wireless sensor networks 被引量:11
19
作者 Ma Wenyu Yan Feng +2 位作者 Zuo Xuzhou Xia Weiwei Shen Lianfeng 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期8-15,共8页
For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists ... For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists of two components, named boundary edge detection and boundary cycle detection. Then, the 1-coverage hole detection algorithm is extended to k-coverage hole scenarios. A coverage degree reduction scheme is proposed to find an independent covering set of nodes in the covered region of the target field and to reduce the coverage degree by one through sleeping those nodes. Repeat the 1-coverage hole detection algorithm and the higher order of coverage holes can be found. By iterating the above steps for k-1 times, the boundary edges and boundary cycles of all k-coverage holes can be discovered. Finally, the proposed algorithm is compared with a location-based coverage hole detection algorithm. Simulation results indicate that the proposed algorithm can accurately detect over 99% coverage holes. 展开更多
关键词 k-coverage hole detection K-COVERAGE wireless sensor networks
在线阅读 下载PDF
Clustering routing algorithm of wireless sensor networks based on Bayesian game 被引量:9
20
作者 Gengzhong Zheng Sanyang Liu Xiaogang Qi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期154-159,共6页
To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomple... To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively. 展开更多
关键词 wireless sensor networks (WSNs) clustering routing Bayesian game energy efficiency.
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部