Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typical...Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typically use a small number of seed nodes that know their locations and protocols whereby other nodes estimate their locations from the messages they receive.For the inherent shortcomings of general particle filter(the sequential Monte Carlo method) this paper introduces particle swarm optimization and weighted centroid algorithm to optimize it.Based on improvement a distributed localization algorithm named WC-IPF(weighted centroid algorithm improved particle filter) has been proposed for localization.In this localization scheme the initial estimate position can be acquired by weighted centroid algorithm.Then the accurate position can be gotten via improved particle filter recursively.The extend simulation results show that the proposed algorithm is efficient for most condition.展开更多
In recent years,there has been a rapid growth in Underwater Wireless Sensor Networks(UWSNs).The focus of research in this area is now on solving the problems associated with large-scale UWSN.One of the major issues in...In recent years,there has been a rapid growth in Underwater Wireless Sensor Networks(UWSNs).The focus of research in this area is now on solving the problems associated with large-scale UWSN.One of the major issues in such a network is the localization of underwater nodes.Localization is required for tracking objects and detecting the target.It is also considered tagging of data where sensed contents are not found of any use without localization.This is useless for application until the position of sensed content is confirmed.This article’s major goal is to review and analyze underwater node localization to solve the localization issues in UWSN.The present paper describes various existing localization schemes and broadly categorizes these schemes as Centralized and Distributed localization schemes underwater.Also,a detailed subdivision of these localization schemes is given.Further,these localization schemes are compared from different perspectives.The detailed analysis of these schemes in terms of certain performance metrics has been discussed in this paper.At the end,the paper addresses several future directions for potential research in improving localization problems of UWSN.展开更多
Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is ...Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is proposed. Mobile node movement model is analyzed and online sequential iterative method is used to compute location result. The detailed steps of mobile sensor node self-localization adopting extended Kalman filter (EKF) is designed. The simulation results show that the accuracy of the localization estimator scheme designed is better than those of maximum likelihood estimation (MLE) and traditional KF algorithm.展开更多
Underwater Wireless Sensor Networks(UWSNs)are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology.However,UWSNs present challenges in processing,energy,and ...Underwater Wireless Sensor Networks(UWSNs)are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology.However,UWSNs present challenges in processing,energy,and memory storage due to the use of acoustic waves for communication,which results in long delays,significant power consumption,limited bandwidth,and packet loss.This paper provides a comprehensive review of the latest advancements in UWSNs,including essential services,common platforms,critical elements,and components such as localization algorithms,communication,synchronization,security,mobility,and applications.Despite significant progress,reliable and flexible solutions are needed to meet the evolving requirements of UWSNs.The purpose of this paper is to provide a framework for future research in the field of UWSNs by examining recent advancements,establishing a standard platform and service criteria,using a taxonomy to determine critical elements,and emphasizing important unresolved issues.展开更多
Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization...Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.展开更多
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand...Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.展开更多
文摘Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typically use a small number of seed nodes that know their locations and protocols whereby other nodes estimate their locations from the messages they receive.For the inherent shortcomings of general particle filter(the sequential Monte Carlo method) this paper introduces particle swarm optimization and weighted centroid algorithm to optimize it.Based on improvement a distributed localization algorithm named WC-IPF(weighted centroid algorithm improved particle filter) has been proposed for localization.In this localization scheme the initial estimate position can be acquired by weighted centroid algorithm.Then the accurate position can be gotten via improved particle filter recursively.The extend simulation results show that the proposed algorithm is efficient for most condition.
文摘In recent years,there has been a rapid growth in Underwater Wireless Sensor Networks(UWSNs).The focus of research in this area is now on solving the problems associated with large-scale UWSN.One of the major issues in such a network is the localization of underwater nodes.Localization is required for tracking objects and detecting the target.It is also considered tagging of data where sensed contents are not found of any use without localization.This is useless for application until the position of sensed content is confirmed.This article’s major goal is to review and analyze underwater node localization to solve the localization issues in UWSN.The present paper describes various existing localization schemes and broadly categorizes these schemes as Centralized and Distributed localization schemes underwater.Also,a detailed subdivision of these localization schemes is given.Further,these localization schemes are compared from different perspectives.The detailed analysis of these schemes in terms of certain performance metrics has been discussed in this paper.At the end,the paper addresses several future directions for potential research in improving localization problems of UWSN.
基金Project supported by the Shanghai Leading Academic Discipcine Project (Grant No.S30108)the National Natural Science Foundation of China (Grant No.60872021)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)
文摘Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is proposed. Mobile node movement model is analyzed and online sequential iterative method is used to compute location result. The detailed steps of mobile sensor node self-localization adopting extended Kalman filter (EKF) is designed. The simulation results show that the accuracy of the localization estimator scheme designed is better than those of maximum likelihood estimation (MLE) and traditional KF algorithm.
文摘Underwater Wireless Sensor Networks(UWSNs)are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology.However,UWSNs present challenges in processing,energy,and memory storage due to the use of acoustic waves for communication,which results in long delays,significant power consumption,limited bandwidth,and packet loss.This paper provides a comprehensive review of the latest advancements in UWSNs,including essential services,common platforms,critical elements,and components such as localization algorithms,communication,synchronization,security,mobility,and applications.Despite significant progress,reliable and flexible solutions are needed to meet the evolving requirements of UWSNs.The purpose of this paper is to provide a framework for future research in the field of UWSNs by examining recent advancements,establishing a standard platform and service criteria,using a taxonomy to determine critical elements,and emphasizing important unresolved issues.
基金appreciation to King Saud University for funding this research through the Researchers Supporting Program number(RSPD2024R918),King Saud University,Riyadh,Saudi Arabia.
文摘Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.
基金the VNUHCM-University of Information Technology’s Scientific Research Support Fund.
文摘Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.