Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunitie...Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. Currently, plenty of protocols are available on the security of either wireless sensor networks or wireless mesh networks, an investigation in peer work underpins the fact that neither of these protocols is adapt to the interconnection of these network types. The internal cause relies on the fact that they differ in terms of complexity, scalability and network abstraction level. Therefore, in this article, we propose a unified security framework with three key management protocols, MPKM, MGKM, and TKM which are able to provide basic functionalities on the simplest devices and advanced functionalities on high performance nodes. We perform a detailed performance evaluation on our protocols against some important metrics such as scalability, key connectivity and compromise resilience, and we also compare our solution to the current keying protocols for WSNs and WMNs.展开更多
Clustering or connected dominating set (CDS) both approaches can establish a virtual backbone (VB) in wireless sensor networks (WSNs) or wireless mesh networks (WMNs). Each cluster consisting of a cluster head (CH) an...Clustering or connected dominating set (CDS) both approaches can establish a virtual backbone (VB) in wireless sensor networks (WSNs) or wireless mesh networks (WMNs). Each cluster consisting of a cluster head (CH) and its neighboring nodes can form a dominating set. After some bridging nodes were selected, cluster heads (CHs) connected through these bridging nodes naturally formed a CDS. Although CDS provides obvious backbone architecture, however, the number of cluster heads and bridging nodes may be too large, this may cause the loss of advantages of virtual backbone. When we effectively reduce their numbers, more effectively WCDS (Weakly Connected Dominating Set) can be fining out. Some essential topics on constructing WCDS-based VB in WSN/WMN are discussed in this paper. From the point of view of three different protocol layers, including network (NWK) layer, MAC layer, and physical (PHY) layer, we explore their cross-layer research topics and design algorithms. For NWK layer, area-based WCDS algorithms and routing strategies including via VB and not via VB are discussed. For MAC layer, a WCDS-based energy-efficient MAC protocol is presented. For PHY layer, battery-aware alternative VB selections and sensor nodes with different transmission ranges are addressed.展开更多
文摘Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. Currently, plenty of protocols are available on the security of either wireless sensor networks or wireless mesh networks, an investigation in peer work underpins the fact that neither of these protocols is adapt to the interconnection of these network types. The internal cause relies on the fact that they differ in terms of complexity, scalability and network abstraction level. Therefore, in this article, we propose a unified security framework with three key management protocols, MPKM, MGKM, and TKM which are able to provide basic functionalities on the simplest devices and advanced functionalities on high performance nodes. We perform a detailed performance evaluation on our protocols against some important metrics such as scalability, key connectivity and compromise resilience, and we also compare our solution to the current keying protocols for WSNs and WMNs.
文摘Clustering or connected dominating set (CDS) both approaches can establish a virtual backbone (VB) in wireless sensor networks (WSNs) or wireless mesh networks (WMNs). Each cluster consisting of a cluster head (CH) and its neighboring nodes can form a dominating set. After some bridging nodes were selected, cluster heads (CHs) connected through these bridging nodes naturally formed a CDS. Although CDS provides obvious backbone architecture, however, the number of cluster heads and bridging nodes may be too large, this may cause the loss of advantages of virtual backbone. When we effectively reduce their numbers, more effectively WCDS (Weakly Connected Dominating Set) can be fining out. Some essential topics on constructing WCDS-based VB in WSN/WMN are discussed in this paper. From the point of view of three different protocol layers, including network (NWK) layer, MAC layer, and physical (PHY) layer, we explore their cross-layer research topics and design algorithms. For NWK layer, area-based WCDS algorithms and routing strategies including via VB and not via VB are discussed. For MAC layer, a WCDS-based energy-efficient MAC protocol is presented. For PHY layer, battery-aware alternative VB selections and sensor nodes with different transmission ranges are addressed.