期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Distinction of an Assortment of Deep Brain Stimulation Parameter Configurations for Treating Parkinson’s Disease Using Machine Learning with Quantification of Tremor Response through a Conformal Wearable and Wireless Inertial Sensor
1
作者 Robert LeMoyne Timothy Mastroianni +1 位作者 Donald Whiting Nestor Tomycz 《Advances in Parkinson's Disease》 2020年第3期21-39,共19页
Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Impe... Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Imperative for the deep brain stimulation parameter optimization process is the quantification of response feedback. As a significant improvement to traditional ordinal scale techniques is the advent of wearable and wireless systems. Recently conformal wearable and wireless systems with a profile on the order of a bandage have been developed. Previous research endeavors have successfully differentiated between deep brain stimulation “On” and “Off” status through quantification using wearable and wireless inertial sensor systems. However, the opportunity exists to further evolve to an objectively quantified response to an assortment of parameter configurations, such as the variation of amplitude, for the deep brain stimulation system. Multiple deep brain stimulation amplitude settings are considered inclusive of “Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. The quantified response of this assortment of amplitude settings is acquired through a conformal wearable and wireless inertial sensor system and consolidated using Python software automation to a feature set amenable for machine learning. Five machine learning algorithms are evaluated: J48 decision tree, K-nearest neighbors, support vector machine, logistic regression, and random forest. The performance of these machine learning algorithms is established based on the classification accuracy to distinguish between the deep brain stimulation amplitude settings and the time to develop the machine learning model. The support vector machine achieves the greatest classification accuracy, which is the primary performance parameter, and <span style="font-family:Verdana;">K-nearest neighbors achieves considerable classification accuracy with minimal time to develop the machine learning model.</span> 展开更多
关键词 Parkinson’s Disease Deep Brain Stimulation Wearable and wireless Systems Conformal Wearable Machine Learning Inertial Sensor accelerometer wireless accelerometer Hand Tremor Cloud Computing Network Centric Therapy Python
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部