By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far ...By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far field stresses was proposed. By introducing the equivalent crack length lcq of wing crack, two terms make up the stress intensity factor K1 at wing crack tip: one is the component K(1) for a single isolated straight wing crack of length 2l subjected to hydraulic pressure in wing crack and far field stresses, and the other is the component K1^(2) due to the effective shear stress induced by the presence of the equivalent main crack. The FEM model of wing crack propagation subjected to hydraulic pressure and far field stresses was also established according to different side pressure coefficients and hydraulic pressures in crack. The result shows that a good agreement is found between theoretical model of wing crack proposed and finite element method (FEM). In theory, an unstable crack propagation is shown if there is high hydraulic pressure and lateral tension. The wing crack model proposed can provide references for studying on hydraulic fracturing in rock masses.展开更多
A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity fa...A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity factor at the wing crack tip. With the equivalent crack length Ieq of the wing crack introduced, the stress intensity factor Kl at the wing crack tip was as- sumed to the sum of two terms: on one hand a component K1^(1) for a single isolated straight wing crack of length 21, and subjected to hydraulic pressure in the wing crack and far-field stresses; on the other hand a component K1(2) due to the effective shear stress induced by the presence of the equivalent main crack. The lateral tensile stress and hydraulic high pressure are the key factors that induce crack propagation unsteadily. The new wing crack theoretical model proposed can supply references for the study on hydraulic fracture in fractured masses, hydraulic fracturing in rock masses.展开更多
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid...The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.展开更多
Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth...Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth and progressive failure.However,the theoretical mechanism of the growth direction evolution of the newly generated wing crack during progressive failure has rarely been studied.A novel analytical method is proposed to evaluate the shear stress effect on the progressive compressive failure and microcrack growth direction in brittle rocks.This model consists of the wing crack growth model under the principal compressive stresses,the direction correlation of the general stress,the principal stress and the initial microcrack inclination,and the relationship between the wing crack length and strain.The shear stress effect on the relationship between y-direction stress and wing crack growth and the relationship between y-direction stress and y-direction strain are analyzed.The shear stress effect on the wing crack growth direction during the progressive compressive failure is determined.The initial crack angle effect on the y-direction peak stress and the wing crack growth direction during the progressive compressive failure considering shear stress is also discussed.A crucial conclusion is that the direction of wing crack growth has a U-shaped variation with the growth of the wing crack.The rationality of the analytical results is verified by an experiment and from numerical results.The study results provide theoretical support for the evaluation of the safety and stability of surrounding rocks in deep underground engineering.展开更多
The pre-burying iron sheets approach was used to prepare rock-like materials with ordered multiple pre-cracks. 60 specimens in total were prepared in these experiments. Through biaxial compression experiments, the inf...The pre-burying iron sheets approach was used to prepare rock-like materials with ordered multiple pre-cracks. 60 specimens in total were prepared in these experiments. Through biaxial compression experiments, the influence of both the number of pre-cracks and pre-cracks angles to crack growth was analyzed. Meanwhile, species of rock bridge failure were summarized, namely, wing crack, secondary shear crack between horizontal pre-cracks and secondary shear crack between vertical pre-cracks. The wing crack plays a significant role in crack growth. Furthermore, fractal dimension was adopted to describe quantitatively the crack growth during the failure process. The results indicate that with the failure of specimens, corresponding fractal dimension for specimen monotonically increases, which indicates that the fractal dimension can be considered to the failure of the specimens quantitatively.展开更多
基金Projects(10972238,51074071,50974059)supported by the National Natural Science Foundation of ChinaProject(10JJ3007)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11C0539)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(200905)supported by Open Research Fund of Hunan Provincial Key of Safe Mining Techniques of Coal Mines,China
文摘By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far field stresses was proposed. By introducing the equivalent crack length lcq of wing crack, two terms make up the stress intensity factor K1 at wing crack tip: one is the component K(1) for a single isolated straight wing crack of length 2l subjected to hydraulic pressure in wing crack and far field stresses, and the other is the component K1^(2) due to the effective shear stress induced by the presence of the equivalent main crack. The FEM model of wing crack propagation subjected to hydraulic pressure and far field stresses was also established according to different side pressure coefficients and hydraulic pressures in crack. The result shows that a good agreement is found between theoretical model of wing crack proposed and finite element method (FEM). In theory, an unstable crack propagation is shown if there is high hydraulic pressure and lateral tension. The wing crack model proposed can provide references for studying on hydraulic fracturing in rock masses.
基金Supported by the National Basic Research Program of China(2007CB209400) Hunan Provincial Natural Science Foundation of China(10JJ3007)
文摘A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity factor at the wing crack tip. With the equivalent crack length Ieq of the wing crack introduced, the stress intensity factor Kl at the wing crack tip was as- sumed to the sum of two terms: on one hand a component K1^(1) for a single isolated straight wing crack of length 21, and subjected to hydraulic pressure in the wing crack and far-field stresses; on the other hand a component K1(2) due to the effective shear stress induced by the presence of the equivalent main crack. The lateral tensile stress and hydraulic high pressure are the key factors that induce crack propagation unsteadily. The new wing crack theoretical model proposed can supply references for the study on hydraulic fracture in fractured masses, hydraulic fracturing in rock masses.
文摘The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.
基金National Natural Science Foundation of China,Grant/Award Numbers:51708016,12172036R&D Program of Beijing Municipal Education Commission,Grant/Award Number:KM202110016014+1 种基金Government of Perm Krai,Research Project,Grant/Award Numbers:СED-26-08-08-28,С-26/628Graduate Innovation Program of Beijing University of Civil Engineering and Architecture,Grant/Award Number:PG2024035。
文摘Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth and progressive failure.However,the theoretical mechanism of the growth direction evolution of the newly generated wing crack during progressive failure has rarely been studied.A novel analytical method is proposed to evaluate the shear stress effect on the progressive compressive failure and microcrack growth direction in brittle rocks.This model consists of the wing crack growth model under the principal compressive stresses,the direction correlation of the general stress,the principal stress and the initial microcrack inclination,and the relationship between the wing crack length and strain.The shear stress effect on the relationship between y-direction stress and wing crack growth and the relationship between y-direction stress and y-direction strain are analyzed.The shear stress effect on the wing crack growth direction during the progressive compressive failure is determined.The initial crack angle effect on the y-direction peak stress and the wing crack growth direction during the progressive compressive failure considering shear stress is also discussed.A crucial conclusion is that the direction of wing crack growth has a U-shaped variation with the growth of the wing crack.The rationality of the analytical results is verified by an experiment and from numerical results.The study results provide theoretical support for the evaluation of the safety and stability of surrounding rocks in deep underground engineering.
基金Project(E21527)supported by the Open Research Fund Program of Hunan Provincial Key Laboratory of Shale Gas Resource Utilization,ChinaProject(2015zzts077)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Projects(51174088,51174228)supported by the National Natural Science Foundation of ChinaProject(2013CB035401)supported by the National Basic Research Program of China
文摘The pre-burying iron sheets approach was used to prepare rock-like materials with ordered multiple pre-cracks. 60 specimens in total were prepared in these experiments. Through biaxial compression experiments, the influence of both the number of pre-cracks and pre-cracks angles to crack growth was analyzed. Meanwhile, species of rock bridge failure were summarized, namely, wing crack, secondary shear crack between horizontal pre-cracks and secondary shear crack between vertical pre-cracks. The wing crack plays a significant role in crack growth. Furthermore, fractal dimension was adopted to describe quantitatively the crack growth during the failure process. The results indicate that with the failure of specimens, corresponding fractal dimension for specimen monotonically increases, which indicates that the fractal dimension can be considered to the failure of the specimens quantitatively.