期刊文献+
共找到200篇文章
< 1 2 10 >
每页显示 20 50 100
Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning
1
作者 Yuan-Chien Lin Yu-Ting Lin +1 位作者 Cai-Rou Chen Chun-Yeh Lai 《Journal of Environmental Sciences》 2025年第6期54-70,共17页
Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air qual... Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively. 展开更多
关键词 Air quality Rainfall pattern traffic emissions Generalized additive model Bayesian networks LSTM model
原文传递
Semisupervised Encrypted Traffic Identification Based on Auxiliary Classification Generative Adversarial Network 被引量:2
2
作者 Jiaming Mao Mingming Zhang +5 位作者 Mu Chen Lu Chen Fei Xia Lei Fan ZiXuan Wang Wenbing Zhao 《Computer Systems Science & Engineering》 SCIE EI 2021年第12期373-390,共18页
The rapidly increasing popularity of mobile devices has changed the methods with which people access various network services and increased net-work traffic markedly.Over the past few decades,network traffic identific... The rapidly increasing popularity of mobile devices has changed the methods with which people access various network services and increased net-work traffic markedly.Over the past few decades,network traffic identification has been a research hotspot in the field of network management and security mon-itoring.However,as more network services use encryption technology,network traffic identification faces many challenges.Although classic machine learning methods can solve many problems that cannot be solved by port-and payload-based methods,manually extract features that are frequently updated is time-consuming and labor-intensive.Deep learning has good automatic feature learning capabilities and is an ideal method for network traffic identification,particularly encrypted traffic identification;Existing recognition methods based on deep learning primarily use supervised learning methods and rely on many labeled samples.However,in real scenarios,labeled samples are often difficult to obtain.This paper adjusts the structure of the auxiliary classification generation adversarial network(ACGAN)so that it can use unlabeled samples for training,and use the wasserstein distance instead of the original cross entropy as the loss function to achieve semisupervised learning.Experimental results show that the identification accuracy of ISCX and USTC data sets using the proposed method yields markedly better performance when the number of labeled samples is small compared to that of convolutional neural network(CNN)based classifier. 展开更多
关键词 Encrypted traffic recognition deep learning generative adversarial network traffic classification semisupervised learning
在线阅读 下载PDF
Network Traffic Based on GARCH-M Model and Extreme Value Theory 被引量:1
3
作者 沈菲 王洪礼 +1 位作者 史道济 李栋 《Transactions of Tianjin University》 EI CAS 2005年第5期386-390,共5页
GARCH-M ( generalized autoregressive conditional heteroskedasticity in the mean) model is used to analyse the volatility clustering phenomenon in mobile communication network traffic. Normal distribution, t distributi... GARCH-M ( generalized autoregressive conditional heteroskedasticity in the mean) model is used to analyse the volatility clustering phenomenon in mobile communication network traffic. Normal distribution, t distribution and generalized Pareto distribution assumptions are adopted re- spectively to simulate the random component in the model. The demonstration of the quantile of network traffic series indicates that common GARCH-M model can partially deal with the "fat tail" problem. However, the "fat tail" characteristic of the random component directly affects the accura- cy of the calculation. Even t distribution is based on the assumption for all the data. On the other hand, extreme value theory, which only concentrates on the tail distribution, can provide more ac- curate result for high quantiles. The best result is obtained based on the generalized Pareto distribu- tion assumption for the random component in the GARCH-M model. 展开更多
关键词 network traffic GARCH-M extreme value theory generalized Pareto distribution
在线阅读 下载PDF
Network Traffic Synthesis and Simulation Framework for Cybersecurity Exercise Systems
4
作者 Dong-Wook Kim Gun-Yoon Sin +3 位作者 Kwangsoo Kim Jaesik Kang Sun-Young Im Myung-Mook Han 《Computers, Materials & Continua》 SCIE EI 2024年第9期3637-3653,共17页
In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in ... In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient. 展开更多
关键词 Cybersecurity exercise synthetic network traffic generative adversarial network traffic generation software-defined networking
在线阅读 下载PDF
Network Traffic Generation Based on Statistical Packet-Level Characteristics
5
作者 WANG Dongbin ZHUO Weihan +2 位作者 ZHANG Junhui WU Kexin OUYANG Wen 《China Communications》 SCIE CSCD 2015年第S2期144-148,共5页
Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time... Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time unit, the generator determines the sent packets number, the type and size of every sent packet according to the statistical characteristics of the original traffic. Then every packet, in which the protocol headers of transport layer, network layer and ethernet layer are encapsulated, is sent via the responding network interface card in the time unit. The results in the experiment show that the correlation coefficients between the bandwidth, the packet number, packet size distribution, the fragment number of the generated network traffic and those of the original traffic are all more than 0.96. The generated traffic and original traffic are very highly related and similar. 展开更多
关键词 network traffic GENERATION packet-level traffic CHARACTERISTICS
在线阅读 下载PDF
Wavelet Neural Network Based Traffic Prediction for Next Generation Network
6
作者 赵其刚 李群湛 何正友 《Journal of Southwest Jiaotong University(English Edition)》 2005年第2期113-118,共6页
By using netflow traffic collecting technology, some traffic data for analysis are collected from a next generation network (NGN) operator. To build a wavelet basis neural network (NN), the Sigmoid function is rep... By using netflow traffic collecting technology, some traffic data for analysis are collected from a next generation network (NGN) operator. To build a wavelet basis neural network (NN), the Sigmoid function is replaced with the wavelet in NN. Then the wavelet multiresolution analysis method is used to decompose the traffic signal, and the decomposed component sequences are employed to train the NN. By using the methods, an NGN traffic prediction model is built to predict one day's traffic. The experimental results show that the traffic prediction method of wavelet NN is more accurate than that without using wavelet in the NGN traffic forecasting. 展开更多
关键词 Wavelet neural network IP traffic prediction Next generation network WAVELET
在线阅读 下载PDF
Effect of Network Traffic on IPS Performance
7
作者 Shahriar Mohammadi Vahid Allahvakil Mojtaba Khaghani 《Journal of Information Security》 2012年第2期162-168,共7页
The importance of network security has grown tremendously and intrusion prevention/detection systems (IPS/IDS) have been widely developed to insure the security of network against suspicious threat. Computer network i... The importance of network security has grown tremendously and intrusion prevention/detection systems (IPS/IDS) have been widely developed to insure the security of network against suspicious threat. Computer network intrusion detection and prevention system consist of collecting traffic data, analyzing them based on detection rules and generate alerts or dropping them if necessary. However IPS has problems such as accuracy signature, the traffic volume, topology design, monitoring sensors. In this paper, we practically examine the traffic effect on performance of IPS. We first examine the detection of DOS attack on a web server by IPS and then we generate network traffic to see how the behavior of IPS has influenced on detection of DOS attack. 展开更多
关键词 network Security network INTRUSION Detection and Prevention System DOS ATTACK network traffic Generation
在线阅读 下载PDF
GraphCWGAN-GP:A Novel Data Augmenting Approach for Imbalanced Encrypted Traffic Classification 被引量:2
8
作者 Jiangtao Zhai Peng Lin +2 位作者 Yongfu Cui Lilong Xu Ming Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期2069-2092,共24页
Encrypted traffic classification has become a hot issue in network security research.The class imbalance problem of traffic samples often causes the deterioration of Machine Learning based classifier performance.Altho... Encrypted traffic classification has become a hot issue in network security research.The class imbalance problem of traffic samples often causes the deterioration of Machine Learning based classifier performance.Although the Generative Adversarial Network(GAN)method can generate new samples by learning the feature distribution of the original samples,it is confronted with the problems of unstable training andmode collapse.To this end,a novel data augmenting approach called Graph CWGAN-GP is proposed in this paper.The traffic data is first converted into grayscale images as the input for the proposed model.Then,the minority class data is augmented with our proposed model,which is built by introducing conditional constraints and a new distance metric in typical GAN.Finally,the classical deep learning model is adopted as a classifier to classify datasets augmented by the Condition GAN(CGAN),Wasserstein GAN-Gradient Penalty(WGAN-GP)and Graph CWGAN-GP,respectively.Compared with the state-of-the-art GAN methods,the Graph CWGAN-GP cannot only control the modes of the data to be generated,but also overcome the problem of unstable training and generate more realistic and diverse samples.The experimental results show that the classification precision,recall and F1-Score of theminority class in the balanced dataset augmented in this paper have improved by more than 2.37%,3.39% and 4.57%,respectively. 展开更多
关键词 Generative Adversarial network imbalanced traffic data data augmenting encrypted traffic classification
在线阅读 下载PDF
Optimized Generative Adversarial Networks for Adversarial Sample Generation
9
作者 Daniyal M.Alghazzawi Syed Hamid Hasan Surbhi Bhatia 《Computers, Materials & Continua》 SCIE EI 2022年第8期3877-3897,共21页
Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper f... Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic.We are using Deep Convolutional Generative Adversarial Networks(DCGAN)to trick the malware classifier to believe it is a normal entity.In this work,a new dataset is created to fool the Artificial Intelligence(AI)based malware detectors,and it consists of different types of attacks such as Denial of Service(DoS),scan 11,scan 44,botnet,spam,User Datagram Portal(UDP)scan,and ssh scan.The discriminator used in the DCGAN discriminates two different attack classes(anomaly and synthetic)and one normal class.The model collapse,instability,and vanishing gradient issues associated with the DCGAN are overcome using the proposed hybrid Aquila optimizer-based Mine blast harmony search algorithm(AO-MBHS).This algorithm helps the generator to create realistic malware samples to be undetected by the discriminator.The performance of the proposed methodology is evaluated using different performance metrics such as training time,detection rate,F-Score,loss function,Accuracy,False alarm rate,etc.The superiority of the hybrid AO-MBHS based DCGAN model is noticed when the detection rate is changed to 0 after the retraining method to make the defensive technique hard to be noticed by the malware detection system.The support vector machines(SVM)is used as the malicious traffic detection application and its True positive rate(TPR)goes from 80%to 0%after retraining the proposed model which shows the efficiency of the proposed model in hiding the samples. 展开更多
关键词 Aquila optimizer convolutional generative adversarial networks mine blast harmony search algorithm network traffic dataset adversarial artificial intelligence techniques
在线阅读 下载PDF
基于双向时序窗口Transformer的网络入侵检测方法
10
作者 王长浩 王明阳 +1 位作者 丁磊 刘凯 《计算机应用研究》 北大核心 2026年第1期271-279,共9页
近年来,网络攻击的高度动态化、隐蔽化给互联网的安全和稳定带来了极大的威胁。针对现有网络入侵检测方法在局部时序建模精度不足及多分类下少数类识别能力不佳等问题,提出了一种基于双向时间滑动窗口Transformer的网络异常流量检测方... 近年来,网络攻击的高度动态化、隐蔽化给互联网的安全和稳定带来了极大的威胁。针对现有网络入侵检测方法在局部时序建模精度不足及多分类下少数类识别能力不佳等问题,提出了一种基于双向时间滑动窗口Transformer的网络异常流量检测方法。该方法将网络流量数据转换为突出时序关系的三维序列数据,引入可学习的嵌入编码及上下文位置编码,以增强序列特征的表现能力,提升了异常流量检测的准确率和稳定性,并在UNSW-NB15、CIC-IDS-2017公开数据集上进行了验证。实验结果表明,所提方法均表现出较好的性能优势,在二分类任务中检测准确率分别为99.79%、99.77%;在多分类任务中,准确率分别达到98.48%、99.76%,性能均显著高于其他先进深度学习模型。综上,该方法有效提升了网络异常流量检测的准确性和对少数类攻击的识别能力,为网络安全防护提供了新的技术手段。 展开更多
关键词 入侵检测 网络流量 双向时间窗口 上下文位置编码
在线阅读 下载PDF
基于Socket流量产生器的研究与实现 被引量:1
11
作者 潘艳辉 王韬 胡聪丛 《科学技术与工程》 2007年第17期4519-4521,共3页
在Visual Studio C++6.0环境下,通过Window Sockets编程,运用多线程技术,基于网络协议构造各种发包器。通过调用这些发包器向实验网络环境中发出数据包,从而在实验网络环境中产生真实的网络流量;并可根据用户的要求配置相应的背景流量... 在Visual Studio C++6.0环境下,通过Window Sockets编程,运用多线程技术,基于网络协议构造各种发包器。通过调用这些发包器向实验网络环境中发出数据包,从而在实验网络环境中产生真实的网络流量;并可根据用户的要求配置相应的背景流量模拟要求,实现对背景流量的模拟;用户可以根据需要通过设置数据包发送速率和持续时间来调整网络流量。 展开更多
关键词 windows socketS 网络流量 网络流量产生器
在线阅读 下载PDF
基于GAN和元学习的伪装流量生成模型
12
作者 邹元怀 张淑芬 +2 位作者 张祖篡 高瑞 马将 《郑州大学学报(理学版)》 北大核心 2026年第1期35-42,共8页
基于深度学习的恶意流量检测模型容易受到对抗攻击的影响,为了发掘此类模型的安全漏洞并找到提高其鲁棒性的方法,提出一种对抗样本生成模型ReN-GAN。该模型基于生成对抗网络原理,能够根据流量特征自动生成相应伪装流量并利用对抗样本可... 基于深度学习的恶意流量检测模型容易受到对抗攻击的影响,为了发掘此类模型的安全漏洞并找到提高其鲁棒性的方法,提出一种对抗样本生成模型ReN-GAN。该模型基于生成对抗网络原理,能够根据流量特征自动生成相应伪装流量并利用对抗样本可迁移性实现黑盒攻击。通过引入动量迭代方法和添加扰动的约束机制,在保证原始流量功能性的同时提高了伪装流量对抗样本的泛化能力。在训练过程中结合元学习理论进行优化,使得目标集成模型能够更有效地捕捉各模型的共同决策边界,提高了生成对抗样本的可迁移性。实验结果表明,ReN-GAN模型在保持原始流量特性的前提下,生成的对抗样本在黑盒检测模型上的平均逃逸率达到了54.1%,且比其他方法显著缩短了生成时间。此外,在以基于DNN的分类器为攻击目标进行训练时,ReN-GAN模型仅需5次迭代即可生成逃逸率为62%的伪装流量,大幅减少了交互次数。 展开更多
关键词 生成对抗网络 恶意流量 对抗样本 元学习 黑盒攻击
在线阅读 下载PDF
Short-term traffic forecasting based on principal component analysis and a generalized regression neural network for satellite networks 被引量:2
13
作者 Liu Ziluan Li Xin 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2018年第1期15-28,36,共15页
With the rapid growth of satellite traffic, the ability to forecast traffic loads becomes vital for improving data transmission efficiency and resource management in satellite networks. To precisely forecast the short... With the rapid growth of satellite traffic, the ability to forecast traffic loads becomes vital for improving data transmission efficiency and resource management in satellite networks. To precisely forecast the short-term traffic loads in satellite networks, a forecasting algorithm based on principal component analysis and a generalized regression neural network (PCA-GRNN) is proposed. The PCA-GRNN algorithm exploits the hidden regularity of satellite networks and fully considers both the temporal and spatial correlations of satellite traffic. Specifically, it selects optimal time series of spatio-temporally correlated historical traffic from satellites as forecasting inputs and applies principal component analysis to reduce the input dimensions while preserving the main features of the data. Then, a generalized regression neural network is utilized to perform the final short-term load forecasting based on the obtained principal components. The PCA-GRNN algorithm is evaluated based on real-world traffic traces, and the results show that the PCA-GRNN method achieves a higher forecasting accuracy, has a shorter training time and is more robust than other state-of-the-art algorithms, even for incomplete traffic datasets. Therefore, the PCA- GRNN algorithm can be regarded as a preferred solution for use in real-time traffic forecasting for realistic satellite networks. 展开更多
关键词 satellite networks traffic load forecasting principal component analysis generalized regression neural network
原文传递
POISSON TRAFFIC PROCESSES IN PURE JUMP MARKOV PROCESSES AND GENERALIZED NETWORKS
14
作者 CAO Chengxuan (School of Management, University of Science and Technology Beijing, Beijing 100083, China) XU Guanghui (Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China) 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2001年第4期438-446,共9页
In this paper, we present the conditions under which the traffic processes in a pure jump Markov process with a general state space are Poisson processes, and give a simple proof of PASTA type theorem in Melamed (1982... In this paper, we present the conditions under which the traffic processes in a pure jump Markov process with a general state space are Poisson processes, and give a simple proof of PASTA type theorem in Melamed (1982) and Walrand (1988). Furthermore, we consider a generalized network with phase type negative arrivals and show that the network has a product-form invariant distribution and its traffic processes which represent the customers exiting from the network are Poisson processes. 展开更多
关键词 Dual predictable PROJECTION NEGATIVE ARRIVAL ph-distribution GENERALIZED network traffic process.
原文传递
Deep convolutional generative adversarial networks for traffic data imputation encoding time series as images 被引量:1
15
作者 Tongge Huang Pranamesh Chakraborty Anuj Sharma 《International Journal of Transportation Science and Technology》 2023年第1期1-18,共18页
Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and oth... Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and other traffic operation tasks. Nonetheless, missing traffic data are a common issue in sensor data which is inevitable due to several reasons, such as malfunctioning, poor maintenance or calibration, and intermittent communications. Such missing data issues often make data analysis and decision-making complicated and challenging. In this study, we have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TSDIGAN) to efficiently reconstruct the missing data by generating realistic synthetic data. In recent years, GANs have shown impressive success in image data generation. However, generating traffic data by taking advantage of GAN based modeling is a challenging task, since traffic data have strong time dependency. To address this problem, we propose a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF) that converts the problem of traffic time-series data generation into that of image generation. We have evaluated and tested our proposed model using the benchmark dataset provided by Caltrans Performance Management Systems (PeMS). This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset. Further, the model achieves reasonably high accuracy in imputation tasks even under a very high missing data rate (>50%), which shows the robustness and efficiency of the proposed model. 展开更多
关键词 traffic data imputation Generative adversarial networks Realistic data generation Time-dependent encoding Deep convolutional neural networks
在线阅读 下载PDF
基于时间窗口的时间敏感网络流量调度方法 被引量:2
16
作者 李超 李红硕 +2 位作者 董哲 史运涛 李文昊 《电光与控制》 北大核心 2025年第4期77-81,共5页
时间敏感网络是一种新型确定性网络,流量调度作为其核心机制,主要通过门控列表保证时间触发流传输的服务质量。然而,以帧为对象进行门控调度设计时,需要计算每一帧的具体时隙分配,存在计算复杂度过高的问题。为此,针对时隙配置求解复杂... 时间敏感网络是一种新型确定性网络,流量调度作为其核心机制,主要通过门控列表保证时间触发流传输的服务质量。然而,以帧为对象进行门控调度设计时,需要计算每一帧的具体时隙分配,存在计算复杂度过高的问题。为此,针对时隙配置求解复杂的问题,将以帧为调度对象改进为以时间窗口为调度对象,基于时间窗口设计了整数线性规划调度方法,并使用Gurobi优化器得出结果。仿真实验表明:提出的调度方法在保证时间触发流的流量特性基础上有效降低了计算复杂度,与以帧为对象的调度方法相比,端到端总时延降低了约6%,求解时间减少了约41%。 展开更多
关键词 时间敏感网络 流量调度 门控列表 时间窗口 整数线性规划
在线阅读 下载PDF
Traffic volume imputation using the attention-based spatiotemporal generative adversarial imputation network
17
作者 Yixin Duan Chengcheng Wang +2 位作者 Chao Wang Jinjun Tang Qun Chen 《Transportation Safety and Environment》 2024年第4期54-67,共14页
With the increasing development of intelligent detection devices,a vast amount of traffic flow data can be collected from intelligent transportation systems.However,these data often encounter issues such as missing an... With the increasing development of intelligent detection devices,a vast amount of traffic flow data can be collected from intelligent transportation systems.However,these data often encounter issues such as missing and abnormal values,which can adversely affect the accuracy of future tasks like traffic flow forecasting.To address this problem,this paper proposes the Attention-based Spatiotemporal Generative Adversarial Imputation Network(ASTGAIN)model,comprising a generator and a discriminator,to conduct traffic volume imputation.The generator incorporates an information fuse module,a spatial attention mechanism,a causal inference module and a temporal attention mechanism,enabling it to capture historical information and extract spatiotemporal relationships from the traffic flow data.The discriminator features a bidirectional gated recurrent unit,which explores the temporal correlation of the imputed data to distinguish between imputed and original values.Additionally,we have devised an imputation filling technique that fully leverages the imputed data to enhance the imputation performance.Comparison experiments with several traditional imputation models demonstrate the superior performance of the ASTGAIN model across diverse missing scenarios. 展开更多
关键词 missing data imputation generative adversarial network spatiotemporal traffic flow data attention mechanism
在线阅读 下载PDF
深度生成模型的轨迹数据发布隐私保护机制
18
作者 王超 张泽晖 +3 位作者 樊娜 罗闯 穆鼎 张梦瑶 《交通运输工程学报》 北大核心 2025年第4期340-354,共15页
为克服当前轨迹数据发布中轨迹数据质量欠佳和隐私保护不足等问题,提出了一种基于深度生成模型的轨迹数据发布隐私保护机制;通过结合时间、距离和速度等多维度特征提取轨迹停留点,对车辆的原始轨迹进行分段,从而降低数据冗余与模型训练... 为克服当前轨迹数据发布中轨迹数据质量欠佳和隐私保护不足等问题,提出了一种基于深度生成模型的轨迹数据发布隐私保护机制;通过结合时间、距离和速度等多维度特征提取轨迹停留点,对车辆的原始轨迹进行分段,从而降低数据冗余与模型训练复杂度;为有效捕捉轨迹数据中的时空特征,运用长短期记忆网络并结合自注意力机制,设计了一种基于生成对抗网络的轨迹合成模型;利用长短期记忆网络和自注意力机制对轨迹序列进行学习,再结合生成对抗网络模型进行训练以生成高质量的合成轨迹;为进一步增强轨迹的个性化隐私保护,应用双向门控循环单元设计了面向用户的轨迹预测模型,并对用户历史轨迹信息进行训练,通过学习-预测的模式,从训练数据中挖掘分析用户的出行规律,形成个性化的用户轨迹预测模型;通过轨迹预测模型对合成轨迹进行分段预测,根据预测结果,识别需要进一步进行强化隐私保护的轨迹段,并添加差分隐私噪声,提升隐私保护,从而获得用于数据发布的隐私保护轨迹。仿真试验结果表明:与现有方法相比,在西安出租车和重卡轨迹数据场景下,均方根误差值降低至26 m,JS散度值在空间分布和时间分布上分别降低至0.12和0.19,互信息值降低至1.97。提出的轨迹数据保护机制在轨迹可用性和隐私保护性能方面均有显著提升,证明了该机制在隐私保护和数据效用之间的良好平衡。 展开更多
关键词 智能交通 轨迹数据保护 轨迹合成 个性化隐私保护 自注意力机制 生成对抗网络
原文传递
改进生成对抗网络与残差网络的流量异常检测模型
19
作者 陈虹 杨思文 +2 位作者 金海波 武聪 由雨竹 《计算机技术与发展》 2025年第4期65-72,共8页
针对网络流量异常检测中因数据类别不平衡导致检测率不高、尤其少数类检测率偏低的问题,提出了一种结合改进生成对抗网络和残差网络的流量异常检测模型。首先,采用孤立森林算法对正常类样本进行异常值处理,以减少正常类样本与少数攻击... 针对网络流量异常检测中因数据类别不平衡导致检测率不高、尤其少数类检测率偏低的问题,提出了一种结合改进生成对抗网络和残差网络的流量异常检测模型。首先,采用孤立森林算法对正常类样本进行异常值处理,以减少正常类样本与少数攻击类样本的边界重叠,避免在过采样过程中由于不同类型样本边界相似性而引入新的离群点。其次,利用条件Wasserstein生成对抗网络在保持数据分布一致性的前提下生成新的少数攻击类样本,解决数据失衡问题的同时提高样本多样性。最后,设计了分裂残差融合卷积自编码器-双向门控循环单元的流量异常检测方法,通过分裂残差结构提取多尺度空间特征,结合双向门控循环单元捕捉前后时序信息,并引入锐度感知最小化算法,结合随机梯度下降优化器,进一步提升少数类的检测率。实验结果表明,在NSL-KDD数据集上,该模型的准确率和F1分数分别达到了89.69%和89.71%。与主流方法相比,对U2R和R2L攻击流量的检出率分别提高了至少8.94%和3.39%,并在CICIDS2017场景数据集上进一步验证了该方法的有效性和可行性。 展开更多
关键词 流量异常检测 条件Wasserstein生成对抗网络 自编码器 孤立森林 锐度感知最小化
在线阅读 下载PDF
基于深度学习的水利工控网络流量异常检测方法 被引量:2
20
作者 马剑波 左翔 +2 位作者 丛小飞 叶瑞禄 刘威风 《水利水电技术(中英文)》 北大核心 2025年第4期167-178,共12页
【目的】针对水利工控网络流量数据集不平衡、特征维数多和检测效率低等问题,提出一种结合改进条件生成对抗网络(ICGAN)、深度残差收缩网络(DRSN)、长短期记忆网络(LSTM)的流量异常检测方法。【方法】利用ICGAN构建了网络流量平衡数据集... 【目的】针对水利工控网络流量数据集不平衡、特征维数多和检测效率低等问题,提出一种结合改进条件生成对抗网络(ICGAN)、深度残差收缩网络(DRSN)、长短期记忆网络(LSTM)的流量异常检测方法。【方法】利用ICGAN构建了网络流量平衡数据集,利用DRSN-LSTM混合深度学习模型对网络异常流量数据进行检测,其中DRSN负责提取数据的空间特征,其残差连接可以解决网络退化与过拟合问题,压缩和激励网络可自动为每个特征图分配权重系数以提高检测效果,LSTM负责提取数据的时间特征。【结果】以秦淮河武定门闸站为应用场景对该方法进行测试,结果表明采用ICGAN优化后的数据集训练的各类检测模型,其流量分类精度高于原始数据集。DRSN-LSTM的网络流量异常检测的总体准确率达到了98.76%,其中正常数据分类的P、R和F1值,分别达到了99.22%、99.69%和99.46%,在评价指标上优于比较模型。【结论】融合ICGAN、DRSN和LSTM算法优势的水利工控网络流量异常检测方法,能够有效改善原始数据集中的类别不平衡性问题,提高对异常工控网络流量的检测能力,保障水利工程安全稳定运行。 展开更多
关键词 水利工控 网络流量异常检测 深度学习 条件生成对抗网络 深度残差收缩网络 长短期记忆网络 评价指标
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部