Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air qual...Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively.展开更多
The rapidly increasing popularity of mobile devices has changed the methods with which people access various network services and increased net-work traffic markedly.Over the past few decades,network traffic identific...The rapidly increasing popularity of mobile devices has changed the methods with which people access various network services and increased net-work traffic markedly.Over the past few decades,network traffic identification has been a research hotspot in the field of network management and security mon-itoring.However,as more network services use encryption technology,network traffic identification faces many challenges.Although classic machine learning methods can solve many problems that cannot be solved by port-and payload-based methods,manually extract features that are frequently updated is time-consuming and labor-intensive.Deep learning has good automatic feature learning capabilities and is an ideal method for network traffic identification,particularly encrypted traffic identification;Existing recognition methods based on deep learning primarily use supervised learning methods and rely on many labeled samples.However,in real scenarios,labeled samples are often difficult to obtain.This paper adjusts the structure of the auxiliary classification generation adversarial network(ACGAN)so that it can use unlabeled samples for training,and use the wasserstein distance instead of the original cross entropy as the loss function to achieve semisupervised learning.Experimental results show that the identification accuracy of ISCX and USTC data sets using the proposed method yields markedly better performance when the number of labeled samples is small compared to that of convolutional neural network(CNN)based classifier.展开更多
GARCH-M ( generalized autoregressive conditional heteroskedasticity in the mean) model is used to analyse the volatility clustering phenomenon in mobile communication network traffic. Normal distribution, t distributi...GARCH-M ( generalized autoregressive conditional heteroskedasticity in the mean) model is used to analyse the volatility clustering phenomenon in mobile communication network traffic. Normal distribution, t distribution and generalized Pareto distribution assumptions are adopted re- spectively to simulate the random component in the model. The demonstration of the quantile of network traffic series indicates that common GARCH-M model can partially deal with the "fat tail" problem. However, the "fat tail" characteristic of the random component directly affects the accura- cy of the calculation. Even t distribution is based on the assumption for all the data. On the other hand, extreme value theory, which only concentrates on the tail distribution, can provide more ac- curate result for high quantiles. The best result is obtained based on the generalized Pareto distribu- tion assumption for the random component in the GARCH-M model.展开更多
In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in ...In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient.展开更多
Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time...Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time unit, the generator determines the sent packets number, the type and size of every sent packet according to the statistical characteristics of the original traffic. Then every packet, in which the protocol headers of transport layer, network layer and ethernet layer are encapsulated, is sent via the responding network interface card in the time unit. The results in the experiment show that the correlation coefficients between the bandwidth, the packet number, packet size distribution, the fragment number of the generated network traffic and those of the original traffic are all more than 0.96. The generated traffic and original traffic are very highly related and similar.展开更多
By using netflow traffic collecting technology, some traffic data for analysis are collected from a next generation network (NGN) operator. To build a wavelet basis neural network (NN), the Sigmoid function is rep...By using netflow traffic collecting technology, some traffic data for analysis are collected from a next generation network (NGN) operator. To build a wavelet basis neural network (NN), the Sigmoid function is replaced with the wavelet in NN. Then the wavelet multiresolution analysis method is used to decompose the traffic signal, and the decomposed component sequences are employed to train the NN. By using the methods, an NGN traffic prediction model is built to predict one day's traffic. The experimental results show that the traffic prediction method of wavelet NN is more accurate than that without using wavelet in the NGN traffic forecasting.展开更多
The importance of network security has grown tremendously and intrusion prevention/detection systems (IPS/IDS) have been widely developed to insure the security of network against suspicious threat. Computer network i...The importance of network security has grown tremendously and intrusion prevention/detection systems (IPS/IDS) have been widely developed to insure the security of network against suspicious threat. Computer network intrusion detection and prevention system consist of collecting traffic data, analyzing them based on detection rules and generate alerts or dropping them if necessary. However IPS has problems such as accuracy signature, the traffic volume, topology design, monitoring sensors. In this paper, we practically examine the traffic effect on performance of IPS. We first examine the detection of DOS attack on a web server by IPS and then we generate network traffic to see how the behavior of IPS has influenced on detection of DOS attack.展开更多
Encrypted traffic classification has become a hot issue in network security research.The class imbalance problem of traffic samples often causes the deterioration of Machine Learning based classifier performance.Altho...Encrypted traffic classification has become a hot issue in network security research.The class imbalance problem of traffic samples often causes the deterioration of Machine Learning based classifier performance.Although the Generative Adversarial Network(GAN)method can generate new samples by learning the feature distribution of the original samples,it is confronted with the problems of unstable training andmode collapse.To this end,a novel data augmenting approach called Graph CWGAN-GP is proposed in this paper.The traffic data is first converted into grayscale images as the input for the proposed model.Then,the minority class data is augmented with our proposed model,which is built by introducing conditional constraints and a new distance metric in typical GAN.Finally,the classical deep learning model is adopted as a classifier to classify datasets augmented by the Condition GAN(CGAN),Wasserstein GAN-Gradient Penalty(WGAN-GP)and Graph CWGAN-GP,respectively.Compared with the state-of-the-art GAN methods,the Graph CWGAN-GP cannot only control the modes of the data to be generated,but also overcome the problem of unstable training and generate more realistic and diverse samples.The experimental results show that the classification precision,recall and F1-Score of theminority class in the balanced dataset augmented in this paper have improved by more than 2.37%,3.39% and 4.57%,respectively.展开更多
Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper f...Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic.We are using Deep Convolutional Generative Adversarial Networks(DCGAN)to trick the malware classifier to believe it is a normal entity.In this work,a new dataset is created to fool the Artificial Intelligence(AI)based malware detectors,and it consists of different types of attacks such as Denial of Service(DoS),scan 11,scan 44,botnet,spam,User Datagram Portal(UDP)scan,and ssh scan.The discriminator used in the DCGAN discriminates two different attack classes(anomaly and synthetic)and one normal class.The model collapse,instability,and vanishing gradient issues associated with the DCGAN are overcome using the proposed hybrid Aquila optimizer-based Mine blast harmony search algorithm(AO-MBHS).This algorithm helps the generator to create realistic malware samples to be undetected by the discriminator.The performance of the proposed methodology is evaluated using different performance metrics such as training time,detection rate,F-Score,loss function,Accuracy,False alarm rate,etc.The superiority of the hybrid AO-MBHS based DCGAN model is noticed when the detection rate is changed to 0 after the retraining method to make the defensive technique hard to be noticed by the malware detection system.The support vector machines(SVM)is used as the malicious traffic detection application and its True positive rate(TPR)goes from 80%to 0%after retraining the proposed model which shows the efficiency of the proposed model in hiding the samples.展开更多
在Visual Studio C++6.0环境下,通过Window Sockets编程,运用多线程技术,基于网络协议构造各种发包器。通过调用这些发包器向实验网络环境中发出数据包,从而在实验网络环境中产生真实的网络流量;并可根据用户的要求配置相应的背景流量...在Visual Studio C++6.0环境下,通过Window Sockets编程,运用多线程技术,基于网络协议构造各种发包器。通过调用这些发包器向实验网络环境中发出数据包,从而在实验网络环境中产生真实的网络流量;并可根据用户的要求配置相应的背景流量模拟要求,实现对背景流量的模拟;用户可以根据需要通过设置数据包发送速率和持续时间来调整网络流量。展开更多
With the rapid growth of satellite traffic, the ability to forecast traffic loads becomes vital for improving data transmission efficiency and resource management in satellite networks. To precisely forecast the short...With the rapid growth of satellite traffic, the ability to forecast traffic loads becomes vital for improving data transmission efficiency and resource management in satellite networks. To precisely forecast the short-term traffic loads in satellite networks, a forecasting algorithm based on principal component analysis and a generalized regression neural network (PCA-GRNN) is proposed. The PCA-GRNN algorithm exploits the hidden regularity of satellite networks and fully considers both the temporal and spatial correlations of satellite traffic. Specifically, it selects optimal time series of spatio-temporally correlated historical traffic from satellites as forecasting inputs and applies principal component analysis to reduce the input dimensions while preserving the main features of the data. Then, a generalized regression neural network is utilized to perform the final short-term load forecasting based on the obtained principal components. The PCA-GRNN algorithm is evaluated based on real-world traffic traces, and the results show that the PCA-GRNN method achieves a higher forecasting accuracy, has a shorter training time and is more robust than other state-of-the-art algorithms, even for incomplete traffic datasets. Therefore, the PCA- GRNN algorithm can be regarded as a preferred solution for use in real-time traffic forecasting for realistic satellite networks.展开更多
In this paper, we present the conditions under which the traffic processes in a pure jump Markov process with a general state space are Poisson processes, and give a simple proof of PASTA type theorem in Melamed (1982...In this paper, we present the conditions under which the traffic processes in a pure jump Markov process with a general state space are Poisson processes, and give a simple proof of PASTA type theorem in Melamed (1982) and Walrand (1988). Furthermore, we consider a generalized network with phase type negative arrivals and show that the network has a product-form invariant distribution and its traffic processes which represent the customers exiting from the network are Poisson processes.展开更多
Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and oth...Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and other traffic operation tasks. Nonetheless, missing traffic data are a common issue in sensor data which is inevitable due to several reasons, such as malfunctioning, poor maintenance or calibration, and intermittent communications. Such missing data issues often make data analysis and decision-making complicated and challenging. In this study, we have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TSDIGAN) to efficiently reconstruct the missing data by generating realistic synthetic data. In recent years, GANs have shown impressive success in image data generation. However, generating traffic data by taking advantage of GAN based modeling is a challenging task, since traffic data have strong time dependency. To address this problem, we propose a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF) that converts the problem of traffic time-series data generation into that of image generation. We have evaluated and tested our proposed model using the benchmark dataset provided by Caltrans Performance Management Systems (PeMS). This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset. Further, the model achieves reasonably high accuracy in imputation tasks even under a very high missing data rate (>50%), which shows the robustness and efficiency of the proposed model.展开更多
With the increasing development of intelligent detection devices,a vast amount of traffic flow data can be collected from intelligent transportation systems.However,these data often encounter issues such as missing an...With the increasing development of intelligent detection devices,a vast amount of traffic flow data can be collected from intelligent transportation systems.However,these data often encounter issues such as missing and abnormal values,which can adversely affect the accuracy of future tasks like traffic flow forecasting.To address this problem,this paper proposes the Attention-based Spatiotemporal Generative Adversarial Imputation Network(ASTGAIN)model,comprising a generator and a discriminator,to conduct traffic volume imputation.The generator incorporates an information fuse module,a spatial attention mechanism,a causal inference module and a temporal attention mechanism,enabling it to capture historical information and extract spatiotemporal relationships from the traffic flow data.The discriminator features a bidirectional gated recurrent unit,which explores the temporal correlation of the imputed data to distinguish between imputed and original values.Additionally,we have devised an imputation filling technique that fully leverages the imputed data to enhance the imputation performance.Comparison experiments with several traditional imputation models demonstrate the superior performance of the ASTGAIN model across diverse missing scenarios.展开更多
基金supported by the Ministry of Environment(Environmental Protection Administration),Taiwan(Projects EPA-106-L103-02-A022,EPA-106-L102-02-A142)the"National"Science and Technology Council(Ministry of Science and Technology),Taiwan(Nos.108-2625-M-008-002,108-2119-M-008-003,108-2636-E-008-004,109-2636-E-008-008,110-2636-E-008-006,111-2636-E-008-014,and 112-2636-E-008-005(Young Scholar Fellowship Program),112-2119-M-008-010,and 108-2638-E-008-001-MY2(Shackleton Program Grant)).
文摘Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively.
基金This work is supported by the Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.under Grant No.J2020068.
文摘The rapidly increasing popularity of mobile devices has changed the methods with which people access various network services and increased net-work traffic markedly.Over the past few decades,network traffic identification has been a research hotspot in the field of network management and security mon-itoring.However,as more network services use encryption technology,network traffic identification faces many challenges.Although classic machine learning methods can solve many problems that cannot be solved by port-and payload-based methods,manually extract features that are frequently updated is time-consuming and labor-intensive.Deep learning has good automatic feature learning capabilities and is an ideal method for network traffic identification,particularly encrypted traffic identification;Existing recognition methods based on deep learning primarily use supervised learning methods and rely on many labeled samples.However,in real scenarios,labeled samples are often difficult to obtain.This paper adjusts the structure of the auxiliary classification generation adversarial network(ACGAN)so that it can use unlabeled samples for training,and use the wasserstein distance instead of the original cross entropy as the loss function to achieve semisupervised learning.Experimental results show that the identification accuracy of ISCX and USTC data sets using the proposed method yields markedly better performance when the number of labeled samples is small compared to that of convolutional neural network(CNN)based classifier.
基金Supported by University and College Doctoral Subject Special Scientific Research Fund( No. 20040056041).
文摘GARCH-M ( generalized autoregressive conditional heteroskedasticity in the mean) model is used to analyse the volatility clustering phenomenon in mobile communication network traffic. Normal distribution, t distribution and generalized Pareto distribution assumptions are adopted re- spectively to simulate the random component in the model. The demonstration of the quantile of network traffic series indicates that common GARCH-M model can partially deal with the "fat tail" problem. However, the "fat tail" characteristic of the random component directly affects the accura- cy of the calculation. Even t distribution is based on the assumption for all the data. On the other hand, extreme value theory, which only concentrates on the tail distribution, can provide more ac- curate result for high quantiles. The best result is obtained based on the generalized Pareto distribu- tion assumption for the random component in the GARCH-M model.
基金supported in part by the Korea Research Institute for Defense Technology Planning and Advancement(KRIT)funded by the Korean Government’s Defense Acquisition Program Administration(DAPA)under Grant KRIT-CT-21-037in part by the Ministry of Education,Republic of Koreain part by the National Research Foundation of Korea under Grant RS-2023-00211871.
文摘In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient.
基金supported in part by national science and technology major project of the ministry of science and technology of China No. 2012BAH45B01Fundamental Research Funds for the Central Universities No. 2014ZD03-03
文摘Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time unit, the generator determines the sent packets number, the type and size of every sent packet according to the statistical characteristics of the original traffic. Then every packet, in which the protocol headers of transport layer, network layer and ethernet layer are encapsulated, is sent via the responding network interface card in the time unit. The results in the experiment show that the correlation coefficients between the bandwidth, the packet number, packet size distribution, the fragment number of the generated network traffic and those of the original traffic are all more than 0.96. The generated traffic and original traffic are very highly related and similar.
文摘By using netflow traffic collecting technology, some traffic data for analysis are collected from a next generation network (NGN) operator. To build a wavelet basis neural network (NN), the Sigmoid function is replaced with the wavelet in NN. Then the wavelet multiresolution analysis method is used to decompose the traffic signal, and the decomposed component sequences are employed to train the NN. By using the methods, an NGN traffic prediction model is built to predict one day's traffic. The experimental results show that the traffic prediction method of wavelet NN is more accurate than that without using wavelet in the NGN traffic forecasting.
文摘The importance of network security has grown tremendously and intrusion prevention/detection systems (IPS/IDS) have been widely developed to insure the security of network against suspicious threat. Computer network intrusion detection and prevention system consist of collecting traffic data, analyzing them based on detection rules and generate alerts or dropping them if necessary. However IPS has problems such as accuracy signature, the traffic volume, topology design, monitoring sensors. In this paper, we practically examine the traffic effect on performance of IPS. We first examine the detection of DOS attack on a web server by IPS and then we generate network traffic to see how the behavior of IPS has influenced on detection of DOS attack.
基金supported by the National Natural Science Foundation of China (Grants Nos.61931004,62072250)the Talent Launch Fund of Nanjing University of Information Science and Technology (2020r061).
文摘Encrypted traffic classification has become a hot issue in network security research.The class imbalance problem of traffic samples often causes the deterioration of Machine Learning based classifier performance.Although the Generative Adversarial Network(GAN)method can generate new samples by learning the feature distribution of the original samples,it is confronted with the problems of unstable training andmode collapse.To this end,a novel data augmenting approach called Graph CWGAN-GP is proposed in this paper.The traffic data is first converted into grayscale images as the input for the proposed model.Then,the minority class data is augmented with our proposed model,which is built by introducing conditional constraints and a new distance metric in typical GAN.Finally,the classical deep learning model is adopted as a classifier to classify datasets augmented by the Condition GAN(CGAN),Wasserstein GAN-Gradient Penalty(WGAN-GP)and Graph CWGAN-GP,respectively.Compared with the state-of-the-art GAN methods,the Graph CWGAN-GP cannot only control the modes of the data to be generated,but also overcome the problem of unstable training and generate more realistic and diverse samples.The experimental results show that the classification precision,recall and F1-Score of theminority class in the balanced dataset augmented in this paper have improved by more than 2.37%,3.39% and 4.57%,respectively.
基金This project was funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under Grant No.RG-91-611-42.
文摘Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic.We are using Deep Convolutional Generative Adversarial Networks(DCGAN)to trick the malware classifier to believe it is a normal entity.In this work,a new dataset is created to fool the Artificial Intelligence(AI)based malware detectors,and it consists of different types of attacks such as Denial of Service(DoS),scan 11,scan 44,botnet,spam,User Datagram Portal(UDP)scan,and ssh scan.The discriminator used in the DCGAN discriminates two different attack classes(anomaly and synthetic)and one normal class.The model collapse,instability,and vanishing gradient issues associated with the DCGAN are overcome using the proposed hybrid Aquila optimizer-based Mine blast harmony search algorithm(AO-MBHS).This algorithm helps the generator to create realistic malware samples to be undetected by the discriminator.The performance of the proposed methodology is evaluated using different performance metrics such as training time,detection rate,F-Score,loss function,Accuracy,False alarm rate,etc.The superiority of the hybrid AO-MBHS based DCGAN model is noticed when the detection rate is changed to 0 after the retraining method to make the defensive technique hard to be noticed by the malware detection system.The support vector machines(SVM)is used as the malicious traffic detection application and its True positive rate(TPR)goes from 80%to 0%after retraining the proposed model which shows the efficiency of the proposed model in hiding the samples.
文摘在Visual Studio C++6.0环境下,通过Window Sockets编程,运用多线程技术,基于网络协议构造各种发包器。通过调用这些发包器向实验网络环境中发出数据包,从而在实验网络环境中产生真实的网络流量;并可根据用户的要求配置相应的背景流量模拟要求,实现对背景流量的模拟;用户可以根据需要通过设置数据包发送速率和持续时间来调整网络流量。
基金supported by the National Natural Science Fundation for Distinguished Young Scholars ( 61425012 )the Fundamental Research Funds for the Central Universities of China ( 2014PTB-00-02)
文摘With the rapid growth of satellite traffic, the ability to forecast traffic loads becomes vital for improving data transmission efficiency and resource management in satellite networks. To precisely forecast the short-term traffic loads in satellite networks, a forecasting algorithm based on principal component analysis and a generalized regression neural network (PCA-GRNN) is proposed. The PCA-GRNN algorithm exploits the hidden regularity of satellite networks and fully considers both the temporal and spatial correlations of satellite traffic. Specifically, it selects optimal time series of spatio-temporally correlated historical traffic from satellites as forecasting inputs and applies principal component analysis to reduce the input dimensions while preserving the main features of the data. Then, a generalized regression neural network is utilized to perform the final short-term load forecasting based on the obtained principal components. The PCA-GRNN algorithm is evaluated based on real-world traffic traces, and the results show that the PCA-GRNN method achieves a higher forecasting accuracy, has a shorter training time and is more robust than other state-of-the-art algorithms, even for incomplete traffic datasets. Therefore, the PCA- GRNN algorithm can be regarded as a preferred solution for use in real-time traffic forecasting for realistic satellite networks.
基金This research is supported by the National Natural Science Foundation of China.
文摘In this paper, we present the conditions under which the traffic processes in a pure jump Markov process with a general state space are Poisson processes, and give a simple proof of PASTA type theorem in Melamed (1982) and Walrand (1988). Furthermore, we consider a generalized network with phase type negative arrivals and show that the network has a product-form invariant distribution and its traffic processes which represent the customers exiting from the network are Poisson processes.
文摘Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and other traffic operation tasks. Nonetheless, missing traffic data are a common issue in sensor data which is inevitable due to several reasons, such as malfunctioning, poor maintenance or calibration, and intermittent communications. Such missing data issues often make data analysis and decision-making complicated and challenging. In this study, we have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TSDIGAN) to efficiently reconstruct the missing data by generating realistic synthetic data. In recent years, GANs have shown impressive success in image data generation. However, generating traffic data by taking advantage of GAN based modeling is a challenging task, since traffic data have strong time dependency. To address this problem, we propose a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF) that converts the problem of traffic time-series data generation into that of image generation. We have evaluated and tested our proposed model using the benchmark dataset provided by Caltrans Performance Management Systems (PeMS). This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset. Further, the model achieves reasonably high accuracy in imputation tasks even under a very high missing data rate (>50%), which shows the robustness and efficiency of the proposed model.
基金funded in part by Key R&D Program of Hunan Province(Grant No.2023GK2014)Key technology projects in the transportation industry(Grant No.2022-ZD6-077)+1 种基金Transportation Science and Technology Plan Project of Shandong Transportation Department(Grant No.2022B62)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2023ZZTS0683)。
文摘With the increasing development of intelligent detection devices,a vast amount of traffic flow data can be collected from intelligent transportation systems.However,these data often encounter issues such as missing and abnormal values,which can adversely affect the accuracy of future tasks like traffic flow forecasting.To address this problem,this paper proposes the Attention-based Spatiotemporal Generative Adversarial Imputation Network(ASTGAIN)model,comprising a generator and a discriminator,to conduct traffic volume imputation.The generator incorporates an information fuse module,a spatial attention mechanism,a causal inference module and a temporal attention mechanism,enabling it to capture historical information and extract spatiotemporal relationships from the traffic flow data.The discriminator features a bidirectional gated recurrent unit,which explores the temporal correlation of the imputed data to distinguish between imputed and original values.Additionally,we have devised an imputation filling technique that fully leverages the imputed data to enhance the imputation performance.Comparison experiments with several traditional imputation models demonstrate the superior performance of the ASTGAIN model across diverse missing scenarios.