The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) underg...The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.展开更多
Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining...Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.展开更多
基金supported by the National Key Research and Development Program of Chinathe National Natural Science Foundation of China (Grant Nos.2024YFA1408000,12474097,and2023YFA1406001)+2 种基金the Guangdong Provincial Quantum Science Strategic Initiative (Grant No.GDZX2201001)the Center for Computational Science and Engineering at Southern University of Science and Technology,the Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by Municipal Development and Reform Commission of Shenzhen(for J.L.Z.and Y.L.)the Chinese funding sources applied via HPSTAR。
文摘The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.
基金funded on the one hand by Agence de l'Innovation de Défense(AID)grant reference number 2021650044on the other hand by Ecole Centrale de Nantes。
文摘Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.