期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于用户层次聚类的联邦学习优化方法 被引量:1
1
作者 谭玉玲 欧国成 +1 位作者 曹灿明 柴争议 《南京理工大学学报》 CAS CSCD 北大核心 2024年第4期469-478,488,共11页
联邦学习通过分布式机器学习训练出一种全局模型,该模型能够泛化所有的本地用户数据,以达到保护用户数据隐私的目的。由于用户间的行为、环境等不同,造成了数据异构问题,进而使得用户局部模型的性能往往远高于全局模型。针对上述问题,... 联邦学习通过分布式机器学习训练出一种全局模型,该模型能够泛化所有的本地用户数据,以达到保护用户数据隐私的目的。由于用户间的行为、环境等不同,造成了数据异构问题,进而使得用户局部模型的性能往往远高于全局模型。针对上述问题,该文提出了一种基于用户层次聚类的联邦学习方法。设计了一种联邦学习收敛评估的方法,用于判断全局模型收敛程度;当全局模型收敛时进行聚类用户操作,能够更加准确地找出相似程度较高的用户;通过余弦相似性的层次聚类方法,将具有相似性的用户进行聚类操作,从而减少因数据异构带来的影响。此外该文还采用较大深度的模型WideResNet提高用户本地训练精度。该文采用数据集EMNIST、CIFAR10,调整用户数据之间的角度,分别进行了两类用户和三类用户的聚类联邦学习实验。实验结果显示,与相关经典联邦学习算法FedAvg相比,采用聚类策略后,其训练准确度提高约10%。 展开更多
关键词 联邦学习 数据异构 层次聚类 余弦相似性 WideResNet
在线阅读 下载PDF
Frustration recognition from speech during game interaction using wide residual networks 被引量:1
2
作者 Meishu SONG Adria MALLOL-RAGOLTA +5 位作者 Emilia PARADA-CABALEIRO Zijiang YANG Shuo LIU Zhao REN Ziping ZHAO Björn WSCHULLER 《Virtual Reality & Intelligent Hardware》 2021年第1期76-86,共11页
Background Although frustration is a common emotional reaction while playing games,an excessive level of frustration can negatively impact a user's experience,discouraging them from further game interactions.The a... Background Although frustration is a common emotional reaction while playing games,an excessive level of frustration can negatively impact a user's experience,discouraging them from further game interactions.The automatic detection of frustration can enable the development of adaptive systems that can adapt a game to a user's specific needs through real-time difficulty adjustment,thereby optimizing the player's experience and guaranteeing game success.To this end,we present a speech-based approach for the automatic detection of frustration during game interactions,a specific task that remains under explored in research.Method The experiments were performed on the Multimodal Game Frustration Database(MGFD),an audiovisual dataset-collected within the Wizard-of-Oz framework-that is specially tailored to investigate verbal and facial expressions of frustration during game interactions.We explored the performance of a variety of acoustic feature sets,including Mel-Spectrograms,Mel Frequency Cepstral Coefficients(MFCCs),and the low-dimensional knowledge-based acoustic feature set eGeMAPS.Because of the continual improvements in speech recognition tasks achieved by the use of convolutional neural networks(CNNs),unlike the MGFD baseline,which is based on the Long Short Term Memory(LSTM)architecture and Support Vector Machine(SVM)classifier-in the present work,we consider typical CNNs,including ResNet,VGG,and AlexNet.Furthermore,given the unresolved debate on the suitability of shallow and deep networks,we also examine the performance of two of the latest deep CNNs:WideResNet and EfficientNet.Results Our best result,achieved with WideResNet and Mel-Spectrogram features,increases the system performance from 58.8%unweighted average recall(UAR)to 93.1%UAR for speech-based automatic frustration recognition. 展开更多
关键词 Frustration recognition wideresnets Machine learning
在线阅读 下载PDF
基于WideResNet的生活垃圾图像分类研究
3
作者 杨亚旗 郭伟 《计算机与网络》 2023年第18期53-57,共5页
针对现有生活垃圾图像分类存在的模型训练耗时长、准确率不高等问题,设计了一种基于WideResNet模型的生活垃圾图像分类框架,通过减少网络的深度,增加网络输出的通道数,使残差块学习到更多有用信息的特点,保证了准确性,通过迁移学习的方... 针对现有生活垃圾图像分类存在的模型训练耗时长、准确率不高等问题,设计了一种基于WideResNet模型的生活垃圾图像分类框架,通过减少网络的深度,增加网络输出的通道数,使残差块学习到更多有用信息的特点,保证了准确性,通过迁移学习的方法,减少了生活垃圾分类模型的训练时间。实验结果表明,在华为垃圾公开数据集上,对4大类垃圾进行分类测试,所采用的WideResNet模型性能明显高于VGG16和ResNet50模型,精度可以达到93.4%,证明了所提算法在生活垃圾图像分类问题上具有较强的准确性和实用性。 展开更多
关键词 WideResNet 迁移学习 垃圾分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部