The wetting behavior of liquid tin(Sn)solder on copper(Cu)substrate at 250℃was investigated by the wetting balance method under the action of direct current(DC).The curves of wetting balance were measured and the mor...The wetting behavior of liquid tin(Sn)solder on copper(Cu)substrate at 250℃was investigated by the wetting balance method under the action of direct current(DC).The curves of wetting balance were measured and the morphology of the intermetallic compound(IMC)precipitated at the interface were observed.Results show that DC has a significant effect on the wettability and IMC.As the current increases,the balance wetting force and the thickness of the IMC layer increase.The direction of the DC also has a certain effect on the balance wetting force and IMC layer.When the current is negative,the final balance wetting force and the thickness of the Cu_(6)Sn_(5) layer are significantly higher than those in the positive current case,which is attributed to electromigration.The IMC precipitation at the interface provides a chemical driving force for the movement of the triple junction.The interaction of the interface atoms and the chemical reaction are enhanced by DC,thereby improving wettability.Meanwhile,the Marangoni convection caused by DC inside liquid Sn solder changes the structure of triple junction,which provides a physical driving force for the spread of the liquid Sn solder on the Cu substrate.展开更多
Antarctica contains numerous scientific mysteries,and the Antarctic ice sheet and its underlying bedrock contain important information about the geological structure of Antarctica and the evolutionary history of the i...Antarctica contains numerous scientific mysteries,and the Antarctic ice sheet and its underlying bedrock contain important information about the geological structure of Antarctica and the evolutionary history of the ice sheet.In order to obtain the focus of these scientific explorations,the Antarctic drilling engineering is constantly developing.The drilling fluid performance directly determines the success or failure of drilling engineering.In order to enhance the poor performance for drilling fluids due to poor dispersion stability and easy settling of organoclay at ultra-low temperatures,the small-molecule wetting agent(HSR)for drilling fluid suitable for Antarctica was prepared by oleic acid,diethanolamine and benzoic acid as raw materials.Its chemical structure,properties and action mechanism were investigated by various experimental methods.The experimental results showed that 2%HSR could improve the colloidal rate for drilling fluid from 6.4%to 84.8%,and the increase rate of yield point was up to 167%.Meanwhile,it also made the drilling fluid excellent in shear dilution and thixotropy.In addition,2%HSR could increase the density from 0.872 to 0.884 g/cm^(3) at-55 ficial.And the drilling fluid with 2%HSR had a good thermal conductivity of 0.1458 W/(m·K)at-55 ficial.This study gives a new direction for the research of drilling fluid treatment agents suitable for the Antarctic region,which will provide strong support for the scientific exploration of the Antarctic region.展开更多
The wetting behavior of slag–coke is a crucial factor influencing the permeability of the lower part of the blast furnace.However,a systematic understanding of the wetting behavior and underlying mechanisms between t...The wetting behavior of slag–coke is a crucial factor influencing the permeability of the lower part of the blast furnace.However,a systematic understanding of the wetting behavior and underlying mechanisms between titanium-containing slag and tuyere coke remains lacking.The sessile drop method was employed to explore the effects of temperature,binary basicity,FeO,and TiO_(2) contents on the wetting behavior of titanium-containing slag and tuyere coke.The results indicate that increasing the temperature enhances the adhesion and wettability of the droplet,reducing the contact angle.Meanwhile,it accelerates the chemical reactions between slag and coke,leading to faster equilibrium.Conversely,increasing slag basicity elevates the contact angle by inhibiting chemical reactions at the slag–coke interface.This inhibition reduces both contact area and depth,thereby hindering slag droplet spreading on the coke surface.The contact angle decreases as the FeO content in the slag increases.Notably,the increase in TiO_(2) content has a dual effect on slag–coke wettability.Initially,it promotes wetting by reducing surface tension and lowering the contact angle.While the TiO_(2) content exceeds 20 wt.%,Ti(C,N)forms a barrier layer at the slag–coke interface,hindering the contact between slag and coke and resulting in an increased contact angle.展开更多
As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD ...As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.展开更多
Alternate wetting and soil drying irrigation(AWD)technique is crucial in infuencing grain quality in rice(Oryza sativa L.).Lipids are the third most abundant constituents in rice grains,after starch and proteins,and a...Alternate wetting and soil drying irrigation(AWD)technique is crucial in infuencing grain quality in rice(Oryza sativa L.).Lipids are the third most abundant constituents in rice grains,after starch and proteins,and are closely related to grain quality.However,it remains unclear about the changes in lipids profling under different AWD regimes.This study set up three irrigation regimes including conventional irrigation(CI),alternate wetting and moderate soil drying irrigation(AWMD),and alternate wetting and severe soil drying irrigation(AWSD).It explored lipidome changes in milled rice of Yangdao 6(YD6)using the untargeted lipidomics approach and analyzed rice cooking and eating quality.The results identifed seven lipid classes,55 lipid subclasses,and 1,086 lipid molecular species.Compared with the CI regime,the AWMD regime mainly altered lipid subclasses consisting of triglyceride(TG),ceramide(Cer),diglyceride(DG),bis-methyl lysophosphatidic acid(BisMePA),phosphocholine(PC),phosphoethanolamine(PE),monogalactosyldiacylglycerol(MGDG),and digalactosyl diglyceride(DGDG)in milled rice and improved cooking and eating quality of rice;in contrast,the AWSD regime distinctly changed lipid subclasses like TG,Cer,DG,PC,PE,hexosylceramide(Hex1Cer),DGDG,and BisMePA and degraded cooking and eating quality of rice.Specifcally,AWMD most signifcantly altered the expressions of lipid molecules,including DGDG(18:0_18:2),DGDG(16:0_14:0),PC(33:1),Cer(t17:0_26:0),and Cer(t17:0_16:0);AWSD most obviously influenced the expressions of TG(6:0_14:0_18:3),PC(41:1),TG(19:1_18:4_18:4),Hex1Cer(d18:2_24:0+O),and Hex1Cer(d18:2_24:1).These 10 altered lipid molecules in milled rice can be preferentially used for investigating their relationships with grain quality in rice.展开更多
Natural surfaces with super hydrophobic properties often have micro or hierarchical structures.In this paper, the wettingbehaviours of a single droplet on biomimetic micro structured surfaces with different roughness ...Natural surfaces with super hydrophobic properties often have micro or hierarchical structures.In this paper, the wettingbehaviours of a single droplet on biomimetic micro structured surfaces with different roughness parameters are investigated.Atheoretical model is proposed to study wetting transitions.The results of theoretical analysis are compared with those of experimentindicating that the proposed model can effectively predict the wetting transition.Furthermore, a numerical simulationbased on the meso scale Lattice Boltzmann Method (LBM) is performed to study dynamic contact angles, contact lines, andlocal velocity fields for the case that a droplet displays on the micro structured surface.A spherical water droplet with r= 15 μmfalls down to a biomimetic square-post patterned surface under the force of gravity with an initial velocity of 0.01 m·sand aninitial vertical distance of 20 μm from droplet centre to the top of pots.In spite of a higher initial velocity, the droplet can stillstay in a Cassie state; moreover, it reaches an equilibrium state at t≈17.5 ms, when contact angle is 153.16° which is slightlylower than the prediction of Cassie-Baxter’s equation which gives θ=154.40°.展开更多
Loess is prone to collapse upon wetting due to its open metastable structure,which poses a considerable threat to the environment,construction processes and human life.In this study,double oedometer tests and scanning...Loess is prone to collapse upon wetting due to its open metastable structure,which poses a considerable threat to the environment,construction processes and human life.In this study,double oedometer tests and scanning electron microscopy and mercury intrusion porosimetry analyses were conducted on loess from Yan’an to study the macroscopic and microscopic characteristics of loess wetting deformation and the underlying mechanism.The wetting collapse of loess under loading depends on the changes in different microstructure levels and elements.This collapse chain reaction is manifested by the dissipation,scattering and recombination of the cementation,deformation and reorganization of the particles,blocking of the pore channels,decrease in the dominant size and volume of unstable macropores(>14μm)and abundant mesopores(2.5-14μm),increase in the volume of small pores(0.05–2.5μm),and volume contraction at the macroscale.This process is dependent on the initial water content,stress level and wetting degree.These findings can facilitate collapsible loess hazard prevention and geological engineering construction.展开更多
The effects of film thickness and composition ratio on the morphology evolution of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blend thin films were investigated. Diverse morphology evolutions including dro...The effects of film thickness and composition ratio on the morphology evolution of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blend thin films were investigated. Diverse morphology evolutions including droplet-matrix structure, hole emergence, bicontinuous structure formation, percolation-to-droplet transition could be observed under annealing in two-phase region, depending on film thickness and composition ratio. The mechanism for these morphology variations was related to the complex effects of phase separation, dewetting and preferential wetting. The comparison between the thickness of bottom PVME layer and the twice of gyration radius 2Rg(PVME) played a dominant role in morphology control. Only when the PS/PVME film had specific film thickness and compositional symmetry, phase separation and dewetting could happen in sequence.展开更多
A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape fac...A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape factors of the "slot" and the preset depth used in "wetting-drying" algorithm. Two typical tests are conducted to examine the performance of the method with the effect of the shape factors of the "slot" being checked in detail in the first test. Numerical results demonstrate that: 1 ) no additional effort to improve the finite difference scheme is needed to implement "slot method" in DIVAST, and 2) "slot method" will simulate wetting and diying processes correctly if the shape factors of the "slot" being selected properly.展开更多
Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theor...Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theoretical analysis and experimental exploration,we have found that in addition to this wettability structure amplification effect,the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie-Baxter and Wenzel wetting regions.This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure.The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity,superhydrophilicity and the transition between these two extreme wetting properties,as well as stabilizing the Cassie-Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf.展开更多
In order to reveal the physical essence of the spreading process of reactive wetting,a sort of model of energy to explain the driving force and wetting mechanism was presented.The reactive wetting of molten A1 and Cu ...In order to reveal the physical essence of the spreading process of reactive wetting,a sort of model of energy to explain the driving force and wetting mechanism was presented.The reactive wetting of molten A1 and Cu Si on graphite was studied by a modified sessile drop method under a vacuum,in which the contact angles were measured by ADSA software.The thermodynamic and kinetic processes of the typical reactive wetting were focused on,the thermodynamic equations of energy relations were derived,the interfacial energy of graphite and solid-liquid interfacial energy versus time at the triple line were calculated,and the dynamics model of interface energy is established.The presented dynamics model is verified by means of experimental results,and it is shown that solid liquid interfacial energy decreases with time in exponential relationship.It provides a new method for reference to explain the process from the angle of energy.展开更多
There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity sch...There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity scheme(IVD scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall(MPB-C scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes(MPB-W scheme)and the geometric formulation scheme(GF scheme).But the numerical stability and accuracy of the schemes for wetting simulation remain unclear in the past.In this paper,the numerical stability and accuracy of these schemes are clarified for the first time,by applying the five widely used contact angle schemes to simulate a two-dimensional(2D)sessile droplet on wall and capillary imbibition in a 2D channel as the examples of static wetting and dynamic wetting simulations respectively.(i)It is shown that the simulated contact angles by the GF scheme are consistent at different density ratios for the same prescribed contact angle,but the simulated contact angles by the PB scheme,IVD scheme,MPB-C scheme and MPB-W scheme change with density ratios for the same fluid-solid interaction strength.The PB scheme is found to be the most unstable scheme for simulating static wetting at increased density ratios.(ii)Although the spurious velocity increases with the increased liquid/vapor density ratio for all the contact angle schemes,the magnitude of the spurious velocity in the PB scheme,IVD scheme and GF scheme are smaller than that in the MPB-C scheme and MPB-W scheme.(iii)The fluid density variation near the wall in the PB scheme is the most significant,and the variation can be diminished in the IVD scheme,MPB-C scheme andMPBWscheme.The variation totally disappeared in the GF scheme.(iv)For the simulation of capillary imbibition,the MPB-C scheme,MPB-Wscheme and GF scheme simulate the dynamics of the liquid-vapor interface well,with the GF scheme being the most accurate.The accuracy of the IVD scheme is low at a small contact angle(44 degrees)but gets high at a large contact angle(60 degrees).However,the PB scheme is the most inaccurate in simulating the dynamics of the liquid-vapor interface.As a whole,it is most suggested to apply the GF scheme to simulate static wetting or dynamic wetting,while it is the least suggested to use the PB scheme to simulate static wetting or dynamic wetting.展开更多
The effects of the substrate-water interaction on the wetting behavior in water-oil and surfactant-water-oil systems confined by one substrate which has the preferential interaction to one species of particles have be...The effects of the substrate-water interaction on the wetting behavior in water-oil and surfactant-water-oil systems confined by one substrate which has the preferential interaction to one species of particles have been investigated by using the free energy analysis and discontinuous molecular dynamic simulations. As the preferential interaction between the substrate and water particles varies from small repulsion to large attraction, the partial drying, partial wetting and complete wetting state are observed in sequence. In addition, the wetting behavior of surfactant aqueous solution on the substrate is not only dependent on the interaction, but also limited by the maximum equilibrium concentration of surfactants at the interface.展开更多
This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than...This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation.展开更多
The wettability of molten Al_(x)CoCrCuFeNi(x is from 0 to 1.5,mol.%)high-entropy alloys(HEA)on a WC substrate was measured using a modified sessile drop method at 1823 K in an argon atmosphere.The wetting behaviors an...The wettability of molten Al_(x)CoCrCuFeNi(x is from 0 to 1.5,mol.%)high-entropy alloys(HEA)on a WC substrate was measured using a modified sessile drop method at 1823 K in an argon atmosphere.The wetting behaviors and interfacial characteristics between HEAs and WC were studied.Good wettability with final equilibrium contact angles of 0.5°-4.6°is obtained,and addition of Al deteriorates the wettability of the HEAs.The wetting of Al_(x)CoCrCuFeNi/WC system can be roughly divided into an initially sharp spreading stage and a subsequent steady-state phase.In the first stage,the adsorption of Cr atoms at the solid-liquid interface primarily contributes to the wetting,and the contact angle drastically reduces.However,both the wetting behavior and interfacial microstructure are determined by the Al content of the HEA in the next stage.For x≤0.5,the wetting is mainly driven by the dissolution of WC,although a few reaction products of(W,Cr)_(2)C are observed.Moreover,an obvious dissolution pit appears at the surface of the substrate.When the Al content of x≥1,the interfacial reaction is dominant in competition with the dissolution of WC,and massive reaction products precipitate at the HEA/WC interface,which leads to the formation of a continuous reaction layer.展开更多
Mine dust is classified as one of five natural coal mining disasters because it can harm the health of miners and poses a serious threat to the safety of the coal mine. Therefore, preparation of an effective dust supp...Mine dust is classified as one of five natural coal mining disasters because it can harm the health of miners and poses a serious threat to the safety of the coal mine. Therefore, preparation of an effective dust suppression agent is highly desired. To improve the capture efficiency of fine dust, this study examines the dust suppression effects of various combinations of wetting agents, additives, and coagulation agents by using the optimum seeking method to reduce mine dust, particularly respirable particles. The optimal formula is shown to contain 10wt% fatty alcohol polyoxyethylene ether(JFC), 4.96wt% cationic polyacrylamide, and 4wt% calcium chloride. The dust suppression effect can be achieved at 96.1% in 5 min by using the optimal formula.展开更多
To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,no...To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,non-flooded mulching cultivation,and alternate wetting and drying(AWD).These regimes could substantially enhance water use efficiency(WUE) by reducing irrigation water.However,such enhancements greatly compromise grain yield.Recent work has shown that moderate AWD,in which photosynthesis is not severely inhibited and plants can rehydrate overnight during the soil drying period,or plants are rewatered at a soil water potential of-10 to-15 k Pa,or midday leaf potential is approximately-0.60 to-0.80 MPa,or the water table is maintained at 10 to 15 cm below the soil surface,could increase not only WUE but also grain yield.Increases in grain yield WUE under moderate AWD are due mainly to reduced redundant vegetative growth;improved canopy structure and root growth;elevated hormonal levels,in particular increases in abscisic acid levels during soil drying and cytokinin levels during rewatering;and enhanced carbon remobilization from vegetative tissues to grain.Moderate AWD could also improve rice quality,including reductions in grain arsenic accumulation,and reduce methane emissions from paddies.Adoption of moderate AWD with an appropriate nitrogen application rate may exert a synergistic effect on grain yield and result in higher WUE and nitrogen use efficiency.Further research is needed to understand root–soil interaction and evaluate the long-term effects of moderate AWD on sustainable agriculture.展开更多
Compared to drought-susceptible rice cultivars(DSRs),drought-resistance rice cultivars(DRRs)could drastically reduce the amount of irrigation water input and simultaneously result in higher grain yield under water-sav...Compared to drought-susceptible rice cultivars(DSRs),drought-resistance rice cultivars(DRRs)could drastically reduce the amount of irrigation water input and simultaneously result in higher grain yield under water-saving irrigation conditions.However,the mechanisms underlying these properties are unclear.We investigated how improved agronomic traits contribute to higher yield and higher water use efficiency(WUE)in DRRs than in DSRs under alternate wetting and drying(AWD).Two DRRs and two DSRs were field-grown in 2015 and 2016 using two different irrigation regimes:continuous flooding(CF)and AWD.Under CF,no statistical differences in grain yield and WUE were observed between DRRs and DSRs.Irrigation water under the AWD regime was 275–349 mm,an amount 49.8%–56.2% of that(552–620 mm)applied under the CF regime.Compared to CF,AWD significantly decreased grain yield in both DRRs and DSRs,with a more significant reduction in DSRs,and WUE was increased in DRRs,but not in DSRs,by 9.9%–23.0% under AWD.Under AWD,DRRs showed a 20.2%–26.2% increase in grain yield and an 18.6%–24.5% increase in WUE compared to DSRs.Compared to DSRs,DRRs showed less redundant vegetative growth,greater sink capacity,higher grain filling efficiency,larger root biomass,and deeper root distribution under AWD.We conclude that these improved agronomic traits exert positive influences on WUE in DRRs under AWD.展开更多
Wetting and spreading processes which involve surfactant solutions are widely used in numerous industrial and practical applications nowadays.The performance of different non-ionic surfactants may vary significantly a...Wetting and spreading processes which involve surfactant solutions are widely used in numerous industrial and practical applications nowadays.The performance of different non-ionic surfactants may vary significantly and so far superspreader solutions show the most promising spreading ability.The addition of trisiloxane surfactants to water was proven to enhance wetting,even on hydrophobic surfaces,on which conventional surfactants seem to have little or no effect.Although these extraordinary surfactants have been extensively studied over recent years,complete understanding of their underlying mechanisms and a suitable mathematical model are still lacking.Here we present a possible explanation for the impressive performance of trisiloxane,which is compared to wetting enhancement of a conventional surfactant.Additionally,we will explain why the hydrophobicity of the surface is a crucial factor for the spreading phenomenon.Light will be also shed on the effect of the pH of the solution to which surfactants are added.Finally,we will investigate long-term effects of the water environment on trisiloxane wetting ability and discuss if ageing may significantly affect their performance.展开更多
基金Doctoral Research Start-up Fund of Lanzhou University of Arts and Science(2021-9)Innovation Fund for Colleges and Universities of Gansu Province,China(2022B-265)。
文摘The wetting behavior of liquid tin(Sn)solder on copper(Cu)substrate at 250℃was investigated by the wetting balance method under the action of direct current(DC).The curves of wetting balance were measured and the morphology of the intermetallic compound(IMC)precipitated at the interface were observed.Results show that DC has a significant effect on the wettability and IMC.As the current increases,the balance wetting force and the thickness of the IMC layer increase.The direction of the DC also has a certain effect on the balance wetting force and IMC layer.When the current is negative,the final balance wetting force and the thickness of the Cu_(6)Sn_(5) layer are significantly higher than those in the positive current case,which is attributed to electromigration.The IMC precipitation at the interface provides a chemical driving force for the movement of the triple junction.The interaction of the interface atoms and the chemical reaction are enhanced by DC,thereby improving wettability.Meanwhile,the Marangoni convection caused by DC inside liquid Sn solder changes the structure of triple junction,which provides a physical driving force for the spread of the liquid Sn solder on the Cu substrate.
基金financially supported by the National Natural Science Foundation of China(No.52274021)the National Key Research and Development Program of China(No.2021YFA0719102)。
文摘Antarctica contains numerous scientific mysteries,and the Antarctic ice sheet and its underlying bedrock contain important information about the geological structure of Antarctica and the evolutionary history of the ice sheet.In order to obtain the focus of these scientific explorations,the Antarctic drilling engineering is constantly developing.The drilling fluid performance directly determines the success or failure of drilling engineering.In order to enhance the poor performance for drilling fluids due to poor dispersion stability and easy settling of organoclay at ultra-low temperatures,the small-molecule wetting agent(HSR)for drilling fluid suitable for Antarctica was prepared by oleic acid,diethanolamine and benzoic acid as raw materials.Its chemical structure,properties and action mechanism were investigated by various experimental methods.The experimental results showed that 2%HSR could improve the colloidal rate for drilling fluid from 6.4%to 84.8%,and the increase rate of yield point was up to 167%.Meanwhile,it also made the drilling fluid excellent in shear dilution and thixotropy.In addition,2%HSR could increase the density from 0.872 to 0.884 g/cm^(3) at-55 ficial.And the drilling fluid with 2%HSR had a good thermal conductivity of 0.1458 W/(m·K)at-55 ficial.This study gives a new direction for the research of drilling fluid treatment agents suitable for the Antarctic region,which will provide strong support for the scientific exploration of the Antarctic region.
基金supported by the Postdoctor Project of Hubei Province(2024HBBHCXA074)National Natural Science Foundation of China(51974212)+2 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202116)Foundation of Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking(NPISlab25-03)Science and Technology Major Project of Wuhan(2023020302020572).
文摘The wetting behavior of slag–coke is a crucial factor influencing the permeability of the lower part of the blast furnace.However,a systematic understanding of the wetting behavior and underlying mechanisms between titanium-containing slag and tuyere coke remains lacking.The sessile drop method was employed to explore the effects of temperature,binary basicity,FeO,and TiO_(2) contents on the wetting behavior of titanium-containing slag and tuyere coke.The results indicate that increasing the temperature enhances the adhesion and wettability of the droplet,reducing the contact angle.Meanwhile,it accelerates the chemical reactions between slag and coke,leading to faster equilibrium.Conversely,increasing slag basicity elevates the contact angle by inhibiting chemical reactions at the slag–coke interface.This inhibition reduces both contact area and depth,thereby hindering slag droplet spreading on the coke surface.The contact angle decreases as the FeO content in the slag increases.Notably,the increase in TiO_(2) content has a dual effect on slag–coke wettability.Initially,it promotes wetting by reducing surface tension and lowering the contact angle.While the TiO_(2) content exceeds 20 wt.%,Ti(C,N)forms a barrier layer at the slag–coke interface,hindering the contact between slag and coke and resulting in an increased contact angle.
基金Project(41877240)supported by the National Natural Science Foundation of China。
文摘As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20241931 and BK20221371)the National Natural Science Foundation of China(32071943 and 32372214)the National Key Research and Development Program of China(2022YFD2300304)。
文摘Alternate wetting and soil drying irrigation(AWD)technique is crucial in infuencing grain quality in rice(Oryza sativa L.).Lipids are the third most abundant constituents in rice grains,after starch and proteins,and are closely related to grain quality.However,it remains unclear about the changes in lipids profling under different AWD regimes.This study set up three irrigation regimes including conventional irrigation(CI),alternate wetting and moderate soil drying irrigation(AWMD),and alternate wetting and severe soil drying irrigation(AWSD).It explored lipidome changes in milled rice of Yangdao 6(YD6)using the untargeted lipidomics approach and analyzed rice cooking and eating quality.The results identifed seven lipid classes,55 lipid subclasses,and 1,086 lipid molecular species.Compared with the CI regime,the AWMD regime mainly altered lipid subclasses consisting of triglyceride(TG),ceramide(Cer),diglyceride(DG),bis-methyl lysophosphatidic acid(BisMePA),phosphocholine(PC),phosphoethanolamine(PE),monogalactosyldiacylglycerol(MGDG),and digalactosyl diglyceride(DGDG)in milled rice and improved cooking and eating quality of rice;in contrast,the AWSD regime distinctly changed lipid subclasses like TG,Cer,DG,PC,PE,hexosylceramide(Hex1Cer),DGDG,and BisMePA and degraded cooking and eating quality of rice.Specifcally,AWMD most signifcantly altered the expressions of lipid molecules,including DGDG(18:0_18:2),DGDG(16:0_14:0),PC(33:1),Cer(t17:0_26:0),and Cer(t17:0_16:0);AWSD most obviously influenced the expressions of TG(6:0_14:0_18:3),PC(41:1),TG(19:1_18:4_18:4),Hex1Cer(d18:2_24:0+O),and Hex1Cer(d18:2_24:1).These 10 altered lipid molecules in milled rice can be preferentially used for investigating their relationships with grain quality in rice.
基金supported by the Royal Society(UK)-NSFC(China)joint project,2009-2011by China Natural Science Foundation major International collaborative project 2010-2013 under grant No.50920105504
文摘Natural surfaces with super hydrophobic properties often have micro or hierarchical structures.In this paper, the wettingbehaviours of a single droplet on biomimetic micro structured surfaces with different roughness parameters are investigated.Atheoretical model is proposed to study wetting transitions.The results of theoretical analysis are compared with those of experimentindicating that the proposed model can effectively predict the wetting transition.Furthermore, a numerical simulationbased on the meso scale Lattice Boltzmann Method (LBM) is performed to study dynamic contact angles, contact lines, andlocal velocity fields for the case that a droplet displays on the micro structured surface.A spherical water droplet with r= 15 μmfalls down to a biomimetic square-post patterned surface under the force of gravity with an initial velocity of 0.01 m·sand aninitial vertical distance of 20 μm from droplet centre to the top of pots.In spite of a higher initial velocity, the droplet can stillstay in a Cassie state; moreover, it reaches an equilibrium state at t≈17.5 ms, when contact angle is 153.16° which is slightlylower than the prediction of Cassie-Baxter’s equation which gives θ=154.40°.
基金supported by the Major Program of National Natural Science Foundation of China(No.41790441)the National Natural Science Foundation of China(No.41807234,41907235)the Fundamental Research Funds for the Central Universities,CHD(300102269203)。
文摘Loess is prone to collapse upon wetting due to its open metastable structure,which poses a considerable threat to the environment,construction processes and human life.In this study,double oedometer tests and scanning electron microscopy and mercury intrusion porosimetry analyses were conducted on loess from Yan’an to study the macroscopic and microscopic characteristics of loess wetting deformation and the underlying mechanism.The wetting collapse of loess under loading depends on the changes in different microstructure levels and elements.This collapse chain reaction is manifested by the dissipation,scattering and recombination of the cementation,deformation and reorganization of the particles,blocking of the pore channels,decrease in the dominant size and volume of unstable macropores(>14μm)and abundant mesopores(2.5-14μm),increase in the volume of small pores(0.05–2.5μm),and volume contraction at the macroscale.This process is dependent on the initial water content,stress level and wetting degree.These findings can facilitate collapsible loess hazard prevention and geological engineering construction.
基金financially supported by the National Natural Science Foundation of China(No.51403026)
文摘The effects of film thickness and composition ratio on the morphology evolution of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blend thin films were investigated. Diverse morphology evolutions including droplet-matrix structure, hole emergence, bicontinuous structure formation, percolation-to-droplet transition could be observed under annealing in two-phase region, depending on film thickness and composition ratio. The mechanism for these morphology variations was related to the complex effects of phase separation, dewetting and preferential wetting. The comparison between the thickness of bottom PVME layer and the twice of gyration radius 2Rg(PVME) played a dominant role in morphology control. Only when the PS/PVME film had specific film thickness and compositional symmetry, phase separation and dewetting could happen in sequence.
基金the National Natural Science Foundation of China (Grant No.10702050)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC07500)the Support Plan of Science and Technology of Tianjin (Grant No.07ZCGYSH01700)
文摘A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape factors of the "slot" and the preset depth used in "wetting-drying" algorithm. Two typical tests are conducted to examine the performance of the method with the effect of the shape factors of the "slot" being checked in detail in the first test. Numerical results demonstrate that: 1 ) no additional effort to improve the finite difference scheme is needed to implement "slot method" in DIVAST, and 2) "slot method" will simulate wetting and diying processes correctly if the shape factors of the "slot" being selected properly.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52105303 and 52025053)Natural Science Foundation of Jilin Province(No.20220101209JC)Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003).
文摘Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theoretical analysis and experimental exploration,we have found that in addition to this wettability structure amplification effect,the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie-Baxter and Wenzel wetting regions.This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure.The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity,superhydrophilicity and the transition between these two extreme wetting properties,as well as stabilizing the Cassie-Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf.
基金Project(50471007)supported by the National Natural Science Foundation of China
文摘In order to reveal the physical essence of the spreading process of reactive wetting,a sort of model of energy to explain the driving force and wetting mechanism was presented.The reactive wetting of molten A1 and Cu Si on graphite was studied by a modified sessile drop method under a vacuum,in which the contact angles were measured by ADSA software.The thermodynamic and kinetic processes of the typical reactive wetting were focused on,the thermodynamic equations of energy relations were derived,the interfacial energy of graphite and solid-liquid interfacial energy versus time at the triple line were calculated,and the dynamics model of interface energy is established.The presented dynamics model is verified by means of experimental results,and it is shown that solid liquid interfacial energy decreases with time in exponential relationship.It provides a new method for reference to explain the process from the angle of energy.
基金sponsored by the National Natural Science Foundation of China under Grant No.52206101Shanghai Sailing Program under Grant No.20YF1431200the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology under Grant No.TKTSPY-2020-01-01.
文摘There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity scheme(IVD scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall(MPB-C scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes(MPB-W scheme)and the geometric formulation scheme(GF scheme).But the numerical stability and accuracy of the schemes for wetting simulation remain unclear in the past.In this paper,the numerical stability and accuracy of these schemes are clarified for the first time,by applying the five widely used contact angle schemes to simulate a two-dimensional(2D)sessile droplet on wall and capillary imbibition in a 2D channel as the examples of static wetting and dynamic wetting simulations respectively.(i)It is shown that the simulated contact angles by the GF scheme are consistent at different density ratios for the same prescribed contact angle,but the simulated contact angles by the PB scheme,IVD scheme,MPB-C scheme and MPB-W scheme change with density ratios for the same fluid-solid interaction strength.The PB scheme is found to be the most unstable scheme for simulating static wetting at increased density ratios.(ii)Although the spurious velocity increases with the increased liquid/vapor density ratio for all the contact angle schemes,the magnitude of the spurious velocity in the PB scheme,IVD scheme and GF scheme are smaller than that in the MPB-C scheme and MPB-W scheme.(iii)The fluid density variation near the wall in the PB scheme is the most significant,and the variation can be diminished in the IVD scheme,MPB-C scheme andMPBWscheme.The variation totally disappeared in the GF scheme.(iv)For the simulation of capillary imbibition,the MPB-C scheme,MPB-Wscheme and GF scheme simulate the dynamics of the liquid-vapor interface well,with the GF scheme being the most accurate.The accuracy of the IVD scheme is low at a small contact angle(44 degrees)but gets high at a large contact angle(60 degrees).However,the PB scheme is the most inaccurate in simulating the dynamics of the liquid-vapor interface.As a whole,it is most suggested to apply the GF scheme to simulate static wetting or dynamic wetting,while it is the least suggested to use the PB scheme to simulate static wetting or dynamic wetting.
文摘The effects of the substrate-water interaction on the wetting behavior in water-oil and surfactant-water-oil systems confined by one substrate which has the preferential interaction to one species of particles have been investigated by using the free energy analysis and discontinuous molecular dynamic simulations. As the preferential interaction between the substrate and water particles varies from small repulsion to large attraction, the partial drying, partial wetting and complete wetting state are observed in sequence. In addition, the wetting behavior of surfactant aqueous solution on the substrate is not only dependent on the interaction, but also limited by the maximum equilibrium concentration of surfactants at the interface.
基金sponsored by the National Natural Science Foundation of China(31461143015,31271641,31471438)the National Key Technology Support Program of China(2014AA10A605,216YFD0300206-4)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Chinathe Jiangsu Creation Program for Post-graduation Students,China(KYZZ15_0364)
文摘This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation.
基金the National Key R&D Program of China(No.2017YFB0305702)the Major Special Project for Industry-university-research Collaborative Innovation of Guangzhou City(No.201604020139)+1 种基金the Project for Science and Technology Program of Guangdong Province(No.2016A020220005)the Major Special Projects for Science and Technology Program of Guangdong Province(Nos.2014B010129002 and 2019B090907001),China。
文摘The wettability of molten Al_(x)CoCrCuFeNi(x is from 0 to 1.5,mol.%)high-entropy alloys(HEA)on a WC substrate was measured using a modified sessile drop method at 1823 K in an argon atmosphere.The wetting behaviors and interfacial characteristics between HEAs and WC were studied.Good wettability with final equilibrium contact angles of 0.5°-4.6°is obtained,and addition of Al deteriorates the wettability of the HEAs.The wetting of Al_(x)CoCrCuFeNi/WC system can be roughly divided into an initially sharp spreading stage and a subsequent steady-state phase.In the first stage,the adsorption of Cr atoms at the solid-liquid interface primarily contributes to the wetting,and the contact angle drastically reduces.However,both the wetting behavior and interfacial microstructure are determined by the Al content of the HEA in the next stage.For x≤0.5,the wetting is mainly driven by the dissolution of WC,although a few reaction products of(W,Cr)_(2)C are observed.Moreover,an obvious dissolution pit appears at the surface of the substrate.When the Al content of x≥1,the interfacial reaction is dominant in competition with the dissolution of WC,and massive reaction products precipitate at the HEA/WC interface,which leads to the formation of a continuous reaction layer.
基金National Natural Science Funds-Coal Joint Funds Key Support Project (No. U1261205)Basic Research Plan Project of Science and Technology of Qingdao (No. 13-1-4-149-jch)Key Technology Development Projects of Qingdao Economic and Technological Development Zone (No. 2013-1-66) for providing the financial support to this research
文摘Mine dust is classified as one of five natural coal mining disasters because it can harm the health of miners and poses a serious threat to the safety of the coal mine. Therefore, preparation of an effective dust suppression agent is highly desired. To improve the capture efficiency of fine dust, this study examines the dust suppression effects of various combinations of wetting agents, additives, and coagulation agents by using the optimum seeking method to reduce mine dust, particularly respirable particles. The optimal formula is shown to contain 10wt% fatty alcohol polyoxyethylene ether(JFC), 4.96wt% cationic polyacrylamide, and 4wt% calcium chloride. The dust suppression effect can be achieved at 96.1% in 5 min by using the optimal formula.
基金the National Basic Research Program(973 Program,No.2012CB114306)the National Natural Science Foundation of China(Nos.31461143015+5 种基金31271641,31471438)the National Key Technology Support Program of China(Nos.2014AA10A6052012BAD04B08)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Top Talent Supporting Program of Yangzhou University(No.2015-01)Jiangsu Creation Program for Postgraduate Students(No.KYZZ15_0364)
文摘To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,non-flooded mulching cultivation,and alternate wetting and drying(AWD).These regimes could substantially enhance water use efficiency(WUE) by reducing irrigation water.However,such enhancements greatly compromise grain yield.Recent work has shown that moderate AWD,in which photosynthesis is not severely inhibited and plants can rehydrate overnight during the soil drying period,or plants are rewatered at a soil water potential of-10 to-15 k Pa,or midday leaf potential is approximately-0.60 to-0.80 MPa,or the water table is maintained at 10 to 15 cm below the soil surface,could increase not only WUE but also grain yield.Increases in grain yield WUE under moderate AWD are due mainly to reduced redundant vegetative growth;improved canopy structure and root growth;elevated hormonal levels,in particular increases in abscisic acid levels during soil drying and cytokinin levels during rewatering;and enhanced carbon remobilization from vegetative tissues to grain.Moderate AWD could also improve rice quality,including reductions in grain arsenic accumulation,and reduce methane emissions from paddies.Adoption of moderate AWD with an appropriate nitrogen application rate may exert a synergistic effect on grain yield and result in higher WUE and nitrogen use efficiency.Further research is needed to understand root–soil interaction and evaluate the long-term effects of moderate AWD on sustainable agriculture.
基金the National Key Research and Development Program of China (2016YFD0300507,2016YFD0300108)the National Natural Science Foundation of China (31671630,31671638,31501264)the China Agriculture Research System (CARS-01)
文摘Compared to drought-susceptible rice cultivars(DSRs),drought-resistance rice cultivars(DRRs)could drastically reduce the amount of irrigation water input and simultaneously result in higher grain yield under water-saving irrigation conditions.However,the mechanisms underlying these properties are unclear.We investigated how improved agronomic traits contribute to higher yield and higher water use efficiency(WUE)in DRRs than in DSRs under alternate wetting and drying(AWD).Two DRRs and two DSRs were field-grown in 2015 and 2016 using two different irrigation regimes:continuous flooding(CF)and AWD.Under CF,no statistical differences in grain yield and WUE were observed between DRRs and DSRs.Irrigation water under the AWD regime was 275–349 mm,an amount 49.8%–56.2% of that(552–620 mm)applied under the CF regime.Compared to CF,AWD significantly decreased grain yield in both DRRs and DSRs,with a more significant reduction in DSRs,and WUE was increased in DRRs,but not in DSRs,by 9.9%–23.0% under AWD.Under AWD,DRRs showed a 20.2%–26.2% increase in grain yield and an 18.6%–24.5% increase in WUE compared to DSRs.Compared to DSRs,DRRs showed less redundant vegetative growth,greater sink capacity,higher grain filling efficiency,larger root biomass,and deeper root distribution under AWD.We conclude that these improved agronomic traits exert positive influences on WUE in DRRs under AWD.
文摘Wetting and spreading processes which involve surfactant solutions are widely used in numerous industrial and practical applications nowadays.The performance of different non-ionic surfactants may vary significantly and so far superspreader solutions show the most promising spreading ability.The addition of trisiloxane surfactants to water was proven to enhance wetting,even on hydrophobic surfaces,on which conventional surfactants seem to have little or no effect.Although these extraordinary surfactants have been extensively studied over recent years,complete understanding of their underlying mechanisms and a suitable mathematical model are still lacking.Here we present a possible explanation for the impressive performance of trisiloxane,which is compared to wetting enhancement of a conventional surfactant.Additionally,we will explain why the hydrophobicity of the surface is a crucial factor for the spreading phenomenon.Light will be also shed on the effect of the pH of the solution to which surfactants are added.Finally,we will investigate long-term effects of the water environment on trisiloxane wetting ability and discuss if ageing may significantly affect their performance.