Avoiding crystallization while maintaining the original microstructure and mechanical properties of the material are long-term goals of laser welding of Zr-based bulk metallic glass(BMG).In this paper,the effect of pu...Avoiding crystallization while maintaining the original microstructure and mechanical properties of the material are long-term goals of laser welding of Zr-based bulk metallic glass(BMG).In this paper,the effect of pulsed laser welding parameters on the microstructure,crystallization degree,and mechanical properties of Zr57Nb5Cu15.4Ni12.6Al10 BMG is investigated.Non-crystallized welding forming of a zirconium-based amorphous alloy is achieved by optimizing the process parameters of pulsed laser welding.The crystallization degree of Zr-based BMG is mainly determined by the welding speed and power.The welding depth and crystallization area fraction increase with an increase in the effective peak power density.The optimized welding process can effectively reduce the heat accumulation of the weld,thus avoiding crystallization.The flexural strength of the weld can be maintained at 96.5%of the matrix.展开更多
Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy beca...Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. In this investigation, an attempt was made to determine a suitable consumable to replace expensive austenitic consumables. Two different consumables, namely, austenitie stain less steel and low hydrogen ferritic steel, were used to fabricate the joints by shielded metal are welding (SMAW) and flux cored arc welding (FCAW) processes. The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties, whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness, irrespective of the welding process used. The SMAW joints exhibited superior mechanical and impact properties, irrespective of the consumables used, than their FCAW counterparts.展开更多
The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis sh...The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.展开更多
In the proposed method, the current/arc is guided through the keyhole so that the energy of the plasma jet is compensated while it is consumed in heating the workpiece along the keyhole. As a result, deep narrow penet...In the proposed method, the current/arc is guided through the keyhole so that the energy of the plasma jet is compensated while it is consumed in heating the workpiece along the keyhole. As a result, deep narrow penetration has been achieved on 12.7 mm (1/2') thick stainless steel plates using 70 A welding current.展开更多
Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation ...Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.展开更多
The rules such as process parameters affecting joint properties and theevolution principle of weld's microstructure have been researched by adopting diffusion weldingprocess to connect SiC_w/6061Al composite. Expe...The rules such as process parameters affecting joint properties and theevolution principle of weld's microstructure have been researched by adopting diffusion weldingprocess to connect SiC_w/6061Al composite. Experimental results show that there exists a criticaltemperature region between solid and liquid phase line of SiC_w/6061Al composite, and the regionwill shrink with the increasing of welding pressure. When diffusion welding occurred under thecritical temperature region, welding joint exhibits bad property of bonding, and the matrix and thereinforcement can't bond effectively. When diffusion welding occurred in the critical temperatureregion, the strength of welding joint changes widely with the variation of welding temperature. Whenwelding temperature varies in 10 deg C, the strength of welding joint will change obviously. Onlywhen welding temperature is higher than the critical temperature region, stable joint properties canbe obtained. Simultaneously the matrix and the reinforcement has better interfacial bonded indiffusion welding interface, and no obvious interface reaction occurred, and thus diffusion weldingof SiC_w/6061 Al composite can be successfully realized.展开更多
590 MPa automobile beam steel strips are used mainly to manufacture the longitudinal beam of trucks.It’s welding properties are critical to the safety of truck.The microstructure and mechanical properties of welding ...590 MPa automobile beam steel strips are used mainly to manufacture the longitudinal beam of trucks.It’s welding properties are critical to the safety of truck.The microstructure and mechanical properties of welding joints processed by CO 2 arc welding with different welding parameters were studied.The results showed that the welding joints were weak when welding heat input were small and the non metal inclusions were found in the weld joints when welding heat input are big.The quality of the welding joints is good enough at 170A of the arc current and 24V of the arc voltage.Keeping the other welding parameters fixed,the incomplete fusion defect occurred in the welding joint with backward welding,but the quality of the welding joint is good with forward welding.展开更多
The levels of fluoride airborne particulates emitted from welding processes were investigated. They were sampled with the patented IOM Sampler, developed by J. H Vincent and D. Mark at the Institute of Occupational Me...The levels of fluoride airborne particulates emitted from welding processes were investigated. They were sampled with the patented IOM Sampler, developed by J. H Vincent and D. Mark at the Institute of Occupational Medicine(IOM), personal inhalable sampler for simultaneous collection of the inhalable and respirable size fractions. Ion chromatography with conductometric detection was used for quantitative analysis. The efficiency of fluoride extraction from the cellulose filter of the IOM sampler was examined using the standard sample of urban air particle matter SRM-1648 a. The best results for extraction were obtained when water and the anionic surfactant N-Cetyl-N-N-Ntrimethylammonium bromide(CTAB) were used in an ultrasonic bath. The limits of detection and quantification for the whole procedure were 8 μg/L and 24 μg/L, respectively The linear range of calibration was 0.01–10 mg/L, which corresponds to 0.0001–0.1 mg of fluorides per m3 in collection of a 20 L air sample. The concentration of fluorides in the respirable fraction of collected air samples was in the range of 0.20–1.82 mg/m3, while the inhalable fraction contained 0.23–1.96 mg/m3 of fluorides during an eight-hour working day in the welding room.展开更多
A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding proces...A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.展开更多
Modeling is essential, significant and difficult for the quality and shaping control of arc welding process. A generalized rough set based modeling method was brought forward and a dynamic predictive model for pulsed ...Modeling is essential, significant and difficult for the quality and shaping control of arc welding process. A generalized rough set based modeling method was brought forward and a dynamic predictive model for pulsed gas tungsten arc welding (GTAW) was obtained by this modeling method. The results show that this modeling method can well acquire knowledge in welding and satisfy the real life application. In addition, the results of comparison between classic rough set model and back-propagation neural network model respectively are also satisfying.展开更多
Mild steel plates of thicknesses 0.5 mm,0.6 mm,0.7 mm,0.8 mm,0.9 mm and 1.0 mm were prepared as test samples.After welding with the developed welding robot and manual electric arc welding machine these test samples we...Mild steel plates of thicknesses 0.5 mm,0.6 mm,0.7 mm,0.8 mm,0.9 mm and 1.0 mm were prepared as test samples.After welding with the developed welding robot and manual electric arc welding machine these test samples were subjected to Tensile Strength and Hardness tests.All data obtained including hardness,load and extension were analyzed and the data produced from electric arc welding operations,the robot welding operations and un-welded plates(control)were compared with one another.The statistical analyses of hardness,load and extension tests for developed welding robot,manual electric arc welding and un-welded(control)mild steel plates of different thicknesses were carried out.The results revealed that for hardness,the developed robot welding has the highest mean value of 115.30,standard deviation value of 14.32 and variance value of 205.06.The descriptive statistics of the load showed that the developed robot welding samples collectively have the lowest mean value of 2,536.85,standard deviation value of 704.21 and variance value of 495,911.72.The descriptive statistics of the extension in which the developed robot welding samples collectively have the lowest mean value of 1.29,standard deviation value of 0.43 and variance value of 0.18 were also determined.The result for hardness showed homogeneity of variance among hardness tests of the samples,which implies variation in the hardness test among the tests of the samples since p-value is 0.038.While the result for loads shows homogeneity of variance among loads of the samples in which the result reveals that there is no variation in the loads among the tests of the samples since p-value is 0.322.The result for extension shows homogeneity of variance among extensions of the samples in which it revealed that there is variation in the extensions among the tests of the samples since p-value is 0.011.The analysis of variance(ANOVA)test result revealed that there is a significant difference in the hardness of the samples in which developed robot welding operation gave the highest hardness compared with electric arc welding and un-welded(CONTROL)since p-value is 0.028.The ANOVA test result for load revealed that there is no significant difference in the loads of the samples since p-value is 0.51.The ANOVA test result of the extension shows that there is a significant difference in the extension of the samples in which developed robot welding operation gave the lowest extension compared with electric arc welding and un-welded(CONTROL)since p-value is 0.001.The results of hardness also showed the mean difference of 16.48 between developed robot welding and un-welded(CONTROL)samples and 7.26 between developed robot welding and electric arc welding samples.Finally,for extension the mean difference of-5.28 between developed robot welding and un-welded(CONTROL)samples and-1.22 between developed robot welding and electric arc welding samples were established.展开更多
The Pb isotope compositions of K-feldspar in granites is paid more and more geologists'attention,due to their importance of tracer.It is a fact that South Dabie Block(SDB)and North Dabie Block(NDB)had exited since...The Pb isotope compositions of K-feldspar in granites is paid more and more geologists'attention,due to their importance of tracer.It is a fact that South Dabie Block(SDB)and North Dabie Block(NDB)had exited since Indosinian epoch(Wang et al.,1992;Cong et al,1994;Zhai et al.,1995;Chen et al.1995;Zhang et al,1996,Wang et al,1997).However,the welding process between SDB展开更多
Manual arc welding is adopted for the construction and assembly of a large carbon steel structural module of a nuclear power reactor, which is characterized by large welding quantity, low efficiency and construction q...Manual arc welding is adopted for the construction and assembly of a large carbon steel structural module of a nuclear power reactor, which is characterized by large welding quantity, low efficiency and construction quality depending on the skill level of welders. In this paper, the MIG welding process is used to carry out simulation test and analysis demonstration. The test proves that the MIG welding not only meets the requirements of nondestructive testing of welds, but also meets the technical requirements in terms of deformation and various mechanical properties. It can also improve the on-site construction efficiency and provide reference for the subsequent use of gas shielded welding for carbon steel structural modules.展开更多
With the increase of surface assembly density and the rapid development of surface mount technology (SMT), electronic products tend to be miniaturized and integrated. The welding quality and welding technology of surf...With the increase of surface assembly density and the rapid development of surface mount technology (SMT), electronic products tend to be miniaturized and integrated. The welding quality and welding technology of surface mount components have attracted more and more attention. Reflow processing technology is a comprehensive scientific research. There are many reasons for the welding quality defects of each electronic component. Any material performance change or unreasonable processing parameters may lead to hidden welding quality defects. Therefore, in the specific production process, it is necessary to make in-depth analysis of practical problems and constantly improve the reflow soldering process, so as to improve the reflow soldering quality, ensure the up-to-standard rate of new products and improve the stability of electronic products and commodity quality.展开更多
Currently,conventional single-sided friction stir welding is primarily suitable for joining thin plate aluminum alloys,and its application to thick plates is still challenging in terms of welding efficiency and joint ...Currently,conventional single-sided friction stir welding is primarily suitable for joining thin plate aluminum alloys,and its application to thick plates is still challenging in terms of welding efficiency and joint mechanical properties.Simultaneous double-sided friction stir welding(SDS-FSW)is a high-efficiency joining technique specifically developed for welding thick plates.However,there is little research on the influence of SDS-FSW process parameters on the joint mechanical properties.In this study,a 12 mm thick AA6061-T6 aluminum alloy and dual robot welding equipment are used to conduct SDS-FSW experiments exploring the influence of rotational speedωand welding speed v on the mechanical properties and microstructure.The results show that when the welding parameters areω=800 r/min and v=60–80 mm/min,smooth and defect-free thick plate aluminum alloy SDS-FSW joints can be obtained,and the macroscopic morphology of the joints is distributed in a“dumbbell”shape.The grain size in the weld nugget zone increases with increasing welding heat input.The microhardness distribution in the joint displays a“W”shape,and the hardness value of the weld nugget zone can reach 67%to 86%of that of the base metal(BM).The junction between the thermo-mechanically affected zone and the heat affected zone is the weakest region of the joint,with the lowest hardness being approximately 51%of that of the BM.When the welding parameters areω=800 r/min and v=140 mm/min,the SDS-FSW joint has the highest tensile strength,reaching 78.43%of the BM strength and exhibiting ductile fracture characteristics.This research indicates that acceptable weld strength in thick aluminum alloys can be achieved via the SDS-FSW joining mechanism,highlighting its significant potential for industrial applications.展开更多
Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional weldi...Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional welding processes.It is energyefficient and free from consumables,affluent and radiations.It is,thus,accepted as a clean welding process that can produceacceptable quality joints.It suffers from some major challenges of defects of its own kind that subject the process open toimprovements so as to prove itself a reliable production process.This study presents a holistic characterization of defects commonlyfound in FSW joints.The finding of the present study reveals that most defects are caused by inadequate heat generation,impropermaterial movement around the pin and inadequate material consolidation behind the pin.The amount of heat generation andmaterial stirring depends on several FSW parameters which may lead to the defect formation,if not selected properly.The resultsreported in this work are derived from sound literature support and experimentation.Prescriptions are made in the form ofcharacteristics of defects such as likelihood of their location,main responsible parameters along with the recommendations forminimizing them.展开更多
In this work, the current understanding and development of fliction-stir welding and processing of Ti- 6Al-4V alloy are briefly reviewed. The critical issues of these processes are addressed, including welding tool ma...In this work, the current understanding and development of fliction-stir welding and processing of Ti- 6Al-4V alloy are briefly reviewed. The critical issues of these processes are addressed, including welding tool materials and design, tool wea,, processing temperature, material flow, processing window and residual stresses. A particular emphasis is given to microstructural aspects and microstructure-properties relationship. Potential engineering applications are highlighted.展开更多
Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joi...Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophis- ticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline, A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered fric- tions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the categol^J of welding are those applied for join- ing of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized.展开更多
Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bond...Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (AIB3CID3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided.展开更多
Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put f...Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly.展开更多
基金Supported by Guangdong Major Project of Basic and Applied Research,China(Grant No.2019B030302010)National Natural Science Foundation of China (Grant Nos.51735003,52205456)
文摘Avoiding crystallization while maintaining the original microstructure and mechanical properties of the material are long-term goals of laser welding of Zr-based bulk metallic glass(BMG).In this paper,the effect of pulsed laser welding parameters on the microstructure,crystallization degree,and mechanical properties of Zr57Nb5Cu15.4Ni12.6Al10 BMG is investigated.Non-crystallized welding forming of a zirconium-based amorphous alloy is achieved by optimizing the process parameters of pulsed laser welding.The crystallization degree of Zr-based BMG is mainly determined by the welding speed and power.The welding depth and crystallization area fraction increase with an increase in the effective peak power density.The optimized welding process can effectively reduce the heat accumulation of the weld,thus avoiding crystallization.The flexural strength of the weld can be maintained at 96.5%of the matrix.
文摘Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. In this investigation, an attempt was made to determine a suitable consumable to replace expensive austenitic consumables. Two different consumables, namely, austenitie stain less steel and low hydrogen ferritic steel, were used to fabricate the joints by shielded metal are welding (SMAW) and flux cored arc welding (FCAW) processes. The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties, whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness, irrespective of the welding process used. The SMAW joints exhibited superior mechanical and impact properties, irrespective of the consumables used, than their FCAW counterparts.
文摘The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.
基金This work is supported by the National Natural Science Foundation under Grant DMI-9812981
文摘In the proposed method, the current/arc is guided through the keyhole so that the energy of the plasma jet is compensated while it is consumed in heating the workpiece along the keyhole. As a result, deep narrow penetration has been achieved on 12.7 mm (1/2') thick stainless steel plates using 70 A welding current.
基金Project supported by the National Natural Science Foundation of China(Grant Nos50375053 and 50575077)
文摘Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.
文摘The rules such as process parameters affecting joint properties and theevolution principle of weld's microstructure have been researched by adopting diffusion weldingprocess to connect SiC_w/6061Al composite. Experimental results show that there exists a criticaltemperature region between solid and liquid phase line of SiC_w/6061Al composite, and the regionwill shrink with the increasing of welding pressure. When diffusion welding occurred under thecritical temperature region, welding joint exhibits bad property of bonding, and the matrix and thereinforcement can't bond effectively. When diffusion welding occurred in the critical temperatureregion, the strength of welding joint changes widely with the variation of welding temperature. Whenwelding temperature varies in 10 deg C, the strength of welding joint will change obviously. Onlywhen welding temperature is higher than the critical temperature region, stable joint properties canbe obtained. Simultaneously the matrix and the reinforcement has better interfacial bonded indiffusion welding interface, and no obvious interface reaction occurred, and thus diffusion weldingof SiC_w/6061 Al composite can be successfully realized.
文摘590 MPa automobile beam steel strips are used mainly to manufacture the longitudinal beam of trucks.It’s welding properties are critical to the safety of truck.The microstructure and mechanical properties of welding joints processed by CO 2 arc welding with different welding parameters were studied.The results showed that the welding joints were weak when welding heat input were small and the non metal inclusions were found in the weld joints when welding heat input are big.The quality of the welding joints is good enough at 170A of the arc current and 24V of the arc voltage.Keeping the other welding parameters fixed,the incomplete fusion defect occurred in the welding joint with backward welding,but the quality of the welding joint is good with forward welding.
基金supported by the Polish Ministry of Science and Higher Education under grant for statutory I-43
文摘The levels of fluoride airborne particulates emitted from welding processes were investigated. They were sampled with the patented IOM Sampler, developed by J. H Vincent and D. Mark at the Institute of Occupational Medicine(IOM), personal inhalable sampler for simultaneous collection of the inhalable and respirable size fractions. Ion chromatography with conductometric detection was used for quantitative analysis. The efficiency of fluoride extraction from the cellulose filter of the IOM sampler was examined using the standard sample of urban air particle matter SRM-1648 a. The best results for extraction were obtained when water and the anionic surfactant N-Cetyl-N-N-Ntrimethylammonium bromide(CTAB) were used in an ultrasonic bath. The limits of detection and quantification for the whole procedure were 8 μg/L and 24 μg/L, respectively The linear range of calibration was 0.01–10 mg/L, which corresponds to 0.0001–0.1 mg of fluorides per m3 in collection of a 20 L air sample. The concentration of fluorides in the respirable fraction of collected air samples was in the range of 0.20–1.82 mg/m3, while the inhalable fraction contained 0.23–1.96 mg/m3 of fluorides during an eight-hour working day in the welding room.
基金National Nature Science Foundation of China (No.50575074)
文摘A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.
基金The National Natural Science Foundation of China(No 60474036)
文摘Modeling is essential, significant and difficult for the quality and shaping control of arc welding process. A generalized rough set based modeling method was brought forward and a dynamic predictive model for pulsed gas tungsten arc welding (GTAW) was obtained by this modeling method. The results show that this modeling method can well acquire knowledge in welding and satisfy the real life application. In addition, the results of comparison between classic rough set model and back-propagation neural network model respectively are also satisfying.
文摘Mild steel plates of thicknesses 0.5 mm,0.6 mm,0.7 mm,0.8 mm,0.9 mm and 1.0 mm were prepared as test samples.After welding with the developed welding robot and manual electric arc welding machine these test samples were subjected to Tensile Strength and Hardness tests.All data obtained including hardness,load and extension were analyzed and the data produced from electric arc welding operations,the robot welding operations and un-welded plates(control)were compared with one another.The statistical analyses of hardness,load and extension tests for developed welding robot,manual electric arc welding and un-welded(control)mild steel plates of different thicknesses were carried out.The results revealed that for hardness,the developed robot welding has the highest mean value of 115.30,standard deviation value of 14.32 and variance value of 205.06.The descriptive statistics of the load showed that the developed robot welding samples collectively have the lowest mean value of 2,536.85,standard deviation value of 704.21 and variance value of 495,911.72.The descriptive statistics of the extension in which the developed robot welding samples collectively have the lowest mean value of 1.29,standard deviation value of 0.43 and variance value of 0.18 were also determined.The result for hardness showed homogeneity of variance among hardness tests of the samples,which implies variation in the hardness test among the tests of the samples since p-value is 0.038.While the result for loads shows homogeneity of variance among loads of the samples in which the result reveals that there is no variation in the loads among the tests of the samples since p-value is 0.322.The result for extension shows homogeneity of variance among extensions of the samples in which it revealed that there is variation in the extensions among the tests of the samples since p-value is 0.011.The analysis of variance(ANOVA)test result revealed that there is a significant difference in the hardness of the samples in which developed robot welding operation gave the highest hardness compared with electric arc welding and un-welded(CONTROL)since p-value is 0.028.The ANOVA test result for load revealed that there is no significant difference in the loads of the samples since p-value is 0.51.The ANOVA test result of the extension shows that there is a significant difference in the extension of the samples in which developed robot welding operation gave the lowest extension compared with electric arc welding and un-welded(CONTROL)since p-value is 0.001.The results of hardness also showed the mean difference of 16.48 between developed robot welding and un-welded(CONTROL)samples and 7.26 between developed robot welding and electric arc welding samples.Finally,for extension the mean difference of-5.28 between developed robot welding and un-welded(CONTROL)samples and-1.22 between developed robot welding and electric arc welding samples were established.
文摘The Pb isotope compositions of K-feldspar in granites is paid more and more geologists'attention,due to their importance of tracer.It is a fact that South Dabie Block(SDB)and North Dabie Block(NDB)had exited since Indosinian epoch(Wang et al.,1992;Cong et al,1994;Zhai et al.,1995;Chen et al.1995;Zhang et al,1996,Wang et al,1997).However,the welding process between SDB
文摘Manual arc welding is adopted for the construction and assembly of a large carbon steel structural module of a nuclear power reactor, which is characterized by large welding quantity, low efficiency and construction quality depending on the skill level of welders. In this paper, the MIG welding process is used to carry out simulation test and analysis demonstration. The test proves that the MIG welding not only meets the requirements of nondestructive testing of welds, but also meets the technical requirements in terms of deformation and various mechanical properties. It can also improve the on-site construction efficiency and provide reference for the subsequent use of gas shielded welding for carbon steel structural modules.
文摘With the increase of surface assembly density and the rapid development of surface mount technology (SMT), electronic products tend to be miniaturized and integrated. The welding quality and welding technology of surface mount components have attracted more and more attention. Reflow processing technology is a comprehensive scientific research. There are many reasons for the welding quality defects of each electronic component. Any material performance change or unreasonable processing parameters may lead to hidden welding quality defects. Therefore, in the specific production process, it is necessary to make in-depth analysis of practical problems and constantly improve the reflow soldering process, so as to improve the reflow soldering quality, ensure the up-to-standard rate of new products and improve the stability of electronic products and commodity quality.
基金Supported by National Key R&D program of China(Grant No.2019YFA0709004)。
文摘Currently,conventional single-sided friction stir welding is primarily suitable for joining thin plate aluminum alloys,and its application to thick plates is still challenging in terms of welding efficiency and joint mechanical properties.Simultaneous double-sided friction stir welding(SDS-FSW)is a high-efficiency joining technique specifically developed for welding thick plates.However,there is little research on the influence of SDS-FSW process parameters on the joint mechanical properties.In this study,a 12 mm thick AA6061-T6 aluminum alloy and dual robot welding equipment are used to conduct SDS-FSW experiments exploring the influence of rotational speedωand welding speed v on the mechanical properties and microstructure.The results show that when the welding parameters areω=800 r/min and v=60–80 mm/min,smooth and defect-free thick plate aluminum alloy SDS-FSW joints can be obtained,and the macroscopic morphology of the joints is distributed in a“dumbbell”shape.The grain size in the weld nugget zone increases with increasing welding heat input.The microhardness distribution in the joint displays a“W”shape,and the hardness value of the weld nugget zone can reach 67%to 86%of that of the base metal(BM).The junction between the thermo-mechanically affected zone and the heat affected zone is the weakest region of the joint,with the lowest hardness being approximately 51%of that of the BM.When the welding parameters areω=800 r/min and v=140 mm/min,the SDS-FSW joint has the highest tensile strength,reaching 78.43%of the BM strength and exhibiting ductile fracture characteristics.This research indicates that acceptable weld strength in thick aluminum alloys can be achieved via the SDS-FSW joining mechanism,highlighting its significant potential for industrial applications.
基金the University Grants Commission (UGC) for its financial assistance (vide sanction order No. F.3-40/2012(SAP-Ⅱ)) under its SAP (DRS-Ⅰ) sanctioned to the Department of Mechanical Engineering for the project entitled Friction Stir Welding and Ultrasonic Machiningfinancially supported by the King Saud University, Vice Deanship of Research Chairs
文摘Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional welding processes.It is energyefficient and free from consumables,affluent and radiations.It is,thus,accepted as a clean welding process that can produceacceptable quality joints.It suffers from some major challenges of defects of its own kind that subject the process open toimprovements so as to prove itself a reliable production process.This study presents a holistic characterization of defects commonlyfound in FSW joints.The finding of the present study reveals that most defects are caused by inadequate heat generation,impropermaterial movement around the pin and inadequate material consolidation behind the pin.The amount of heat generation andmaterial stirring depends on several FSW parameters which may lead to the defect formation,if not selected properly.The resultsreported in this work are derived from sound literature support and experimentation.Prescriptions are made in the form ofcharacteristics of defects such as likelihood of their location,main responsible parameters along with the recommendations forminimizing them.
文摘In this work, the current understanding and development of fliction-stir welding and processing of Ti- 6Al-4V alloy are briefly reviewed. The critical issues of these processes are addressed, including welding tool materials and design, tool wea,, processing temperature, material flow, processing window and residual stresses. A particular emphasis is given to microstructural aspects and microstructure-properties relationship. Potential engineering applications are highlighted.
基金financial support on this work from the National Natural Science Foundation of China(Grant Nos.51475272 and 51550110501)Shandong University for the Postdoctoral fellowship
文摘Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophis- ticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline, A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered fric- tions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the categol^J of welding are those applied for join- ing of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175186,51675185)Guangdong Provincial Natural Science Foundation of China(Grant No.S2013020012757)EU project PIIF-GA-2012-332304(Grant No.ESR332304)
文摘Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (AIB3CID3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided.
文摘Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly.