针对最小二乘孪生支持向量机受误差值影响大,对噪声样本敏感及核函数、核参数选择困难等问题,提出一种Critic特征加权的多核最小二乘孪生支持向量机(Multi-Kernel Least-Squares Twin Support Vector Machine based on Critic weighted,...针对最小二乘孪生支持向量机受误差值影响大,对噪声样本敏感及核函数、核参数选择困难等问题,提出一种Critic特征加权的多核最小二乘孪生支持向量机(Multi-Kernel Least-Squares Twin Support Vector Machine based on Critic weighted,CMKLSTSVM)分类方法。首先,CMKLSTSVM使用Critic法赋予特征权重,反映不同特征间重要性差异,降低冗余特征及噪声样本影响。其次,根据混合多核学习策略构造了一种新的多核权重系数确定方法。该方法通过基核与理想核间的混合核对齐值判断核函数相似程度,确定权重系数,可以合理地组合多个核函数,最大程度地发挥不同核函数的映射能力。最后,采用加权求和的方式将特征权重与核权重进行统一并构造多核结构,使数据表达更全面,提高模型灵活性。在UCI数据集上的对比实验表明,CMKLSTSVM的分类准确率优于单核结构的SVM(support vector machine)算法,同时在高光谱图像上的对比实验反映了CMKLSTSVM对于包含噪声的真实分类问题的有效性。展开更多
文摘针对最小二乘孪生支持向量机受误差值影响大,对噪声样本敏感及核函数、核参数选择困难等问题,提出一种Critic特征加权的多核最小二乘孪生支持向量机(Multi-Kernel Least-Squares Twin Support Vector Machine based on Critic weighted,CMKLSTSVM)分类方法。首先,CMKLSTSVM使用Critic法赋予特征权重,反映不同特征间重要性差异,降低冗余特征及噪声样本影响。其次,根据混合多核学习策略构造了一种新的多核权重系数确定方法。该方法通过基核与理想核间的混合核对齐值判断核函数相似程度,确定权重系数,可以合理地组合多个核函数,最大程度地发挥不同核函数的映射能力。最后,采用加权求和的方式将特征权重与核权重进行统一并构造多核结构,使数据表达更全面,提高模型灵活性。在UCI数据集上的对比实验表明,CMKLSTSVM的分类准确率优于单核结构的SVM(support vector machine)算法,同时在高光谱图像上的对比实验反映了CMKLSTSVM对于包含噪声的真实分类问题的有效性。